Loading…

A Binary Ionogel Electrolyte for the Realization of an All Solid‐State Electrical Double‐Layer Capacitor Performing at Low Temperature

Over the last years, solid‐state electrolytes made of an ionic liquid (IL) confined in a solid (inorganic or polymer) matrix, also known as ionogels, have been proposed to solve the leakage problems occurring at high temperatures in classical electrical double‐layer capacitors (EDLCs) with an organi...

Full description

Saved in:
Bibliographic Details
Published in:ChemSusChem 2024-11, Vol.17 (21), p.e202400596-n/a
Main Authors: Pameté, Emmanuel, Wang, Zhuanpei, Béguin, François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2586-76579ba2625faa219ef903ec4116dc7eb6a4e8c8137c1ff63fd14b0c29ac16af3
container_end_page n/a
container_issue 21
container_start_page e202400596
container_title ChemSusChem
container_volume 17
creator Pameté, Emmanuel
Wang, Zhuanpei
Béguin, François
description Over the last years, solid‐state electrolytes made of an ionic liquid (IL) confined in a solid (inorganic or polymer) matrix, also known as ionogels, have been proposed to solve the leakage problems occurring at high temperatures in classical electrical double‐layer capacitors (EDLCs) with an organic electrolyte, and thereof improve the safety. However, making ionogel‐based EDLCs perform with reasonable power at low temperature is still a major challenge due to the high melting point of the confined IL. To overcome these limitations, the present contribution discloses ionogel films prepared in a totally oxygen/moisture‐free atmosphere by encapsulating 70 wt % of an equimolar mixture of 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate – [EMIm][BF4]0.5[FSI]0.5 – into a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) network. The further called “binary ionogel” films demonstrated a high flexibility and a good ionic conductivity of 5.8 mS cm−1 at 20 °C. Contrary to the ionogels prepared from either [EMIm][FSI] or [EMIm][BF4], displaying melting at Tm=−16 °C and −7 °C, respectively, the crystallization of confined [EMIm][BF4]0.5[FSI]0.5 is quenched in the binary ionogel, which shows only a glass transition at −101 °C. This quenching enables an increased ionicity and ionic diffusion at the interface with the PVdF host network, leading the binary ionogel membrane to display higher ionic conductivity below −20 °C than the parent binary [EMIm][BF4]0.5[FSI]0.5 liquid. Laminate EDLCs were built with a 100 μm thick binary ionogel separator and electrodes made from a hierarchical micro‐/mesoporous MgO‐templated carbon containing a reasonable proportion of mesopores to enhance the mass transport of ions, especially at low temperature where the ionic diffusion noticeably decreases. The EDLCs operated up to 3.0 V with ideal EDL characteristics from −40 °C to room temperature. Their output specific energy under a discharge power of 1 kW kg−1 is ca. 4 times larger than with a cell implementing the same carbon electrodes together with the binary [EMIm][BF4]0.5[FSI]0.5 liquid. Hence, this binary ionogel electrolyte concept paves the road for developing safe and flexible solid‐state energy storage devices operating at subambient temperatures in extreme environments. The low temperature transport properties of the [EMIm][FSI]0.5[BF4]0.5 ionic liquid (IL) are improved by its encapsulation in a PVdF‐HFP matrix to f
doi_str_mv 10.1002/cssc.202400596
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060751764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127015818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2586-76579ba2625faa219ef903ec4116dc7eb6a4e8c8137c1ff63fd14b0c29ac16af3</originalsourceid><addsrcrecordid>eNqFkcGKFDEQhoMo7rp69SgBL15mTNLdSfdxbFddGFCcFbyF6kxlzZLujEmaZTx59uQz-iRmmXUEL56qoL76KOon5ClnS86YeGlSMkvBRM1Y08l75JS3sl40sv58_9hX_IQ8SumaMck6KR-Sk6pVnVKcnZIfK_rKTRD39CJM4Qo9Pfdocgx-n5HaEGn-gvQjgnffILsw0WApTHTlPd0E77a_vv_cZCjsYc8Z8PR1mAePZbKGPUbaww6My8X1AWNRjm66opDpOtzQSxx3GCHPER-TBxZ8wid39Yx8enN-2b9brN-_vehX64URTSsXSjaqG0BI0VgAwTu0HavQ1JzLrVE4SKixNS2vlOHWyspueT0wIzowXIKtzsiLg3cXw9cZU9ajSwa9hwnDnHRV3qQarmRd0Of_oNdhjlO5TldcKMablreFWh4oE0NKEa3eRTeWn2rO9G1K-jYlfUypLDy7087DiNsj_ieWAnQH4MZ53P9Hp_vNpv8r_w38BqG-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127015818</pqid></control><display><type>article</type><title>A Binary Ionogel Electrolyte for the Realization of an All Solid‐State Electrical Double‐Layer Capacitor Performing at Low Temperature</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Pameté, Emmanuel ; Wang, Zhuanpei ; Béguin, François</creator><creatorcontrib>Pameté, Emmanuel ; Wang, Zhuanpei ; Béguin, François</creatorcontrib><description>Over the last years, solid‐state electrolytes made of an ionic liquid (IL) confined in a solid (inorganic or polymer) matrix, also known as ionogels, have been proposed to solve the leakage problems occurring at high temperatures in classical electrical double‐layer capacitors (EDLCs) with an organic electrolyte, and thereof improve the safety. However, making ionogel‐based EDLCs perform with reasonable power at low temperature is still a major challenge due to the high melting point of the confined IL. To overcome these limitations, the present contribution discloses ionogel films prepared in a totally oxygen/moisture‐free atmosphere by encapsulating 70 wt % of an equimolar mixture of 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate – [EMIm][BF4]0.5[FSI]0.5 – into a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) network. The further called “binary ionogel” films demonstrated a high flexibility and a good ionic conductivity of 5.8 mS cm−1 at 20 °C. Contrary to the ionogels prepared from either [EMIm][FSI] or [EMIm][BF4], displaying melting at Tm=−16 °C and −7 °C, respectively, the crystallization of confined [EMIm][BF4]0.5[FSI]0.5 is quenched in the binary ionogel, which shows only a glass transition at −101 °C. This quenching enables an increased ionicity and ionic diffusion at the interface with the PVdF host network, leading the binary ionogel membrane to display higher ionic conductivity below −20 °C than the parent binary [EMIm][BF4]0.5[FSI]0.5 liquid. Laminate EDLCs were built with a 100 μm thick binary ionogel separator and electrodes made from a hierarchical micro‐/mesoporous MgO‐templated carbon containing a reasonable proportion of mesopores to enhance the mass transport of ions, especially at low temperature where the ionic diffusion noticeably decreases. The EDLCs operated up to 3.0 V with ideal EDL characteristics from −40 °C to room temperature. Their output specific energy under a discharge power of 1 kW kg−1 is ca. 4 times larger than with a cell implementing the same carbon electrodes together with the binary [EMIm][BF4]0.5[FSI]0.5 liquid. Hence, this binary ionogel electrolyte concept paves the road for developing safe and flexible solid‐state energy storage devices operating at subambient temperatures in extreme environments. The low temperature transport properties of the [EMIm][FSI]0.5[BF4]0.5 ionic liquid (IL) are improved by its encapsulation in a PVdF‐HFP matrix to form an ionogel (IG), allowing an IG‐based electrical double‐layer capacitor (EDLC) to operate outstandingly down to −40 °C.</description><identifier>ISSN: 1864-5631</identifier><identifier>ISSN: 1864-564X</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202400596</identifier><identifier>PMID: 38797710</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>all solid-state capacitor ; binary ionic liquid ; binary ionogel membrane ; Capacitors ; Carbon ; Crystallization ; Electrodes ; Electrolytes ; Extreme environments ; Free atmosphere ; Glass transition ; hierarchical micro/mesoporous carbon ; High temperature ; Ion currents ; Ion diffusion ; Ionic liquids ; Low temperature ; low-temperature operation ; Mass transport ; Melting points ; Molten salt electrolytes ; Nonaqueous electrolytes ; PVdF-HFP matrix ; Room temperature ; Solid electrolytes ; Specific energy ; Temperature ; Vinylidene ; Vinylidene fluoride</subject><ispartof>ChemSusChem, 2024-11, Vol.17 (21), p.e202400596-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2586-76579ba2625faa219ef903ec4116dc7eb6a4e8c8137c1ff63fd14b0c29ac16af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38797710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pameté, Emmanuel</creatorcontrib><creatorcontrib>Wang, Zhuanpei</creatorcontrib><creatorcontrib>Béguin, François</creatorcontrib><title>A Binary Ionogel Electrolyte for the Realization of an All Solid‐State Electrical Double‐Layer Capacitor Performing at Low Temperature</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Over the last years, solid‐state electrolytes made of an ionic liquid (IL) confined in a solid (inorganic or polymer) matrix, also known as ionogels, have been proposed to solve the leakage problems occurring at high temperatures in classical electrical double‐layer capacitors (EDLCs) with an organic electrolyte, and thereof improve the safety. However, making ionogel‐based EDLCs perform with reasonable power at low temperature is still a major challenge due to the high melting point of the confined IL. To overcome these limitations, the present contribution discloses ionogel films prepared in a totally oxygen/moisture‐free atmosphere by encapsulating 70 wt % of an equimolar mixture of 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate – [EMIm][BF4]0.5[FSI]0.5 – into a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) network. The further called “binary ionogel” films demonstrated a high flexibility and a good ionic conductivity of 5.8 mS cm−1 at 20 °C. Contrary to the ionogels prepared from either [EMIm][FSI] or [EMIm][BF4], displaying melting at Tm=−16 °C and −7 °C, respectively, the crystallization of confined [EMIm][BF4]0.5[FSI]0.5 is quenched in the binary ionogel, which shows only a glass transition at −101 °C. This quenching enables an increased ionicity and ionic diffusion at the interface with the PVdF host network, leading the binary ionogel membrane to display higher ionic conductivity below −20 °C than the parent binary [EMIm][BF4]0.5[FSI]0.5 liquid. Laminate EDLCs were built with a 100 μm thick binary ionogel separator and electrodes made from a hierarchical micro‐/mesoporous MgO‐templated carbon containing a reasonable proportion of mesopores to enhance the mass transport of ions, especially at low temperature where the ionic diffusion noticeably decreases. The EDLCs operated up to 3.0 V with ideal EDL characteristics from −40 °C to room temperature. Their output specific energy under a discharge power of 1 kW kg−1 is ca. 4 times larger than with a cell implementing the same carbon electrodes together with the binary [EMIm][BF4]0.5[FSI]0.5 liquid. Hence, this binary ionogel electrolyte concept paves the road for developing safe and flexible solid‐state energy storage devices operating at subambient temperatures in extreme environments. The low temperature transport properties of the [EMIm][FSI]0.5[BF4]0.5 ionic liquid (IL) are improved by its encapsulation in a PVdF‐HFP matrix to form an ionogel (IG), allowing an IG‐based electrical double‐layer capacitor (EDLC) to operate outstandingly down to −40 °C.</description><subject>all solid-state capacitor</subject><subject>binary ionic liquid</subject><subject>binary ionogel membrane</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Crystallization</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Extreme environments</subject><subject>Free atmosphere</subject><subject>Glass transition</subject><subject>hierarchical micro/mesoporous carbon</subject><subject>High temperature</subject><subject>Ion currents</subject><subject>Ion diffusion</subject><subject>Ionic liquids</subject><subject>Low temperature</subject><subject>low-temperature operation</subject><subject>Mass transport</subject><subject>Melting points</subject><subject>Molten salt electrolytes</subject><subject>Nonaqueous electrolytes</subject><subject>PVdF-HFP matrix</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>Specific energy</subject><subject>Temperature</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><issn>1864-5631</issn><issn>1864-564X</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcGKFDEQhoMo7rp69SgBL15mTNLdSfdxbFddGFCcFbyF6kxlzZLujEmaZTx59uQz-iRmmXUEL56qoL76KOon5ClnS86YeGlSMkvBRM1Y08l75JS3sl40sv58_9hX_IQ8SumaMck6KR-Sk6pVnVKcnZIfK_rKTRD39CJM4Qo9Pfdocgx-n5HaEGn-gvQjgnffILsw0WApTHTlPd0E77a_vv_cZCjsYc8Z8PR1mAePZbKGPUbaww6My8X1AWNRjm66opDpOtzQSxx3GCHPER-TBxZ8wid39Yx8enN-2b9brN-_vehX64URTSsXSjaqG0BI0VgAwTu0HavQ1JzLrVE4SKixNS2vlOHWyspueT0wIzowXIKtzsiLg3cXw9cZU9ajSwa9hwnDnHRV3qQarmRd0Of_oNdhjlO5TldcKMablreFWh4oE0NKEa3eRTeWn2rO9G1K-jYlfUypLDy7087DiNsj_ieWAnQH4MZ53P9Hp_vNpv8r_w38BqG-</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Pameté, Emmanuel</creator><creator>Wang, Zhuanpei</creator><creator>Béguin, François</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20241111</creationdate><title>A Binary Ionogel Electrolyte for the Realization of an All Solid‐State Electrical Double‐Layer Capacitor Performing at Low Temperature</title><author>Pameté, Emmanuel ; Wang, Zhuanpei ; Béguin, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2586-76579ba2625faa219ef903ec4116dc7eb6a4e8c8137c1ff63fd14b0c29ac16af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>all solid-state capacitor</topic><topic>binary ionic liquid</topic><topic>binary ionogel membrane</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Crystallization</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Extreme environments</topic><topic>Free atmosphere</topic><topic>Glass transition</topic><topic>hierarchical micro/mesoporous carbon</topic><topic>High temperature</topic><topic>Ion currents</topic><topic>Ion diffusion</topic><topic>Ionic liquids</topic><topic>Low temperature</topic><topic>low-temperature operation</topic><topic>Mass transport</topic><topic>Melting points</topic><topic>Molten salt electrolytes</topic><topic>Nonaqueous electrolytes</topic><topic>PVdF-HFP matrix</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>Specific energy</topic><topic>Temperature</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pameté, Emmanuel</creatorcontrib><creatorcontrib>Wang, Zhuanpei</creatorcontrib><creatorcontrib>Béguin, François</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pameté, Emmanuel</au><au>Wang, Zhuanpei</au><au>Béguin, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Binary Ionogel Electrolyte for the Realization of an All Solid‐State Electrical Double‐Layer Capacitor Performing at Low Temperature</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2024-11-11</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>e202400596</spage><epage>n/a</epage><pages>e202400596-n/a</pages><issn>1864-5631</issn><issn>1864-564X</issn><eissn>1864-564X</eissn><abstract>Over the last years, solid‐state electrolytes made of an ionic liquid (IL) confined in a solid (inorganic or polymer) matrix, also known as ionogels, have been proposed to solve the leakage problems occurring at high temperatures in classical electrical double‐layer capacitors (EDLCs) with an organic electrolyte, and thereof improve the safety. However, making ionogel‐based EDLCs perform with reasonable power at low temperature is still a major challenge due to the high melting point of the confined IL. To overcome these limitations, the present contribution discloses ionogel films prepared in a totally oxygen/moisture‐free atmosphere by encapsulating 70 wt % of an equimolar mixture of 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate – [EMIm][BF4]0.5[FSI]0.5 – into a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) network. The further called “binary ionogel” films demonstrated a high flexibility and a good ionic conductivity of 5.8 mS cm−1 at 20 °C. Contrary to the ionogels prepared from either [EMIm][FSI] or [EMIm][BF4], displaying melting at Tm=−16 °C and −7 °C, respectively, the crystallization of confined [EMIm][BF4]0.5[FSI]0.5 is quenched in the binary ionogel, which shows only a glass transition at −101 °C. This quenching enables an increased ionicity and ionic diffusion at the interface with the PVdF host network, leading the binary ionogel membrane to display higher ionic conductivity below −20 °C than the parent binary [EMIm][BF4]0.5[FSI]0.5 liquid. Laminate EDLCs were built with a 100 μm thick binary ionogel separator and electrodes made from a hierarchical micro‐/mesoporous MgO‐templated carbon containing a reasonable proportion of mesopores to enhance the mass transport of ions, especially at low temperature where the ionic diffusion noticeably decreases. The EDLCs operated up to 3.0 V with ideal EDL characteristics from −40 °C to room temperature. Their output specific energy under a discharge power of 1 kW kg−1 is ca. 4 times larger than with a cell implementing the same carbon electrodes together with the binary [EMIm][BF4]0.5[FSI]0.5 liquid. Hence, this binary ionogel electrolyte concept paves the road for developing safe and flexible solid‐state energy storage devices operating at subambient temperatures in extreme environments. The low temperature transport properties of the [EMIm][FSI]0.5[BF4]0.5 ionic liquid (IL) are improved by its encapsulation in a PVdF‐HFP matrix to form an ionogel (IG), allowing an IG‐based electrical double‐layer capacitor (EDLC) to operate outstandingly down to −40 °C.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38797710</pmid><doi>10.1002/cssc.202400596</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2024-11, Vol.17 (21), p.e202400596-n/a
issn 1864-5631
1864-564X
1864-564X
language eng
recordid cdi_proquest_miscellaneous_3060751764
source Wiley-Blackwell Read & Publish Collection
subjects all solid-state capacitor
binary ionic liquid
binary ionogel membrane
Capacitors
Carbon
Crystallization
Electrodes
Electrolytes
Extreme environments
Free atmosphere
Glass transition
hierarchical micro/mesoporous carbon
High temperature
Ion currents
Ion diffusion
Ionic liquids
Low temperature
low-temperature operation
Mass transport
Melting points
Molten salt electrolytes
Nonaqueous electrolytes
PVdF-HFP matrix
Room temperature
Solid electrolytes
Specific energy
Temperature
Vinylidene
Vinylidene fluoride
title A Binary Ionogel Electrolyte for the Realization of an All Solid‐State Electrical Double‐Layer Capacitor Performing at Low Temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Binary%20Ionogel%20Electrolyte%20for%20the%20Realization%20of%20an%20All%20Solid%E2%80%90State%20Electrical%20Double%E2%80%90Layer%20Capacitor%20Performing%20at%20Low%20Temperature&rft.jtitle=ChemSusChem&rft.au=Pamet%C3%A9,%20Emmanuel&rft.date=2024-11-11&rft.volume=17&rft.issue=21&rft.spage=e202400596&rft.epage=n/a&rft.pages=e202400596-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202400596&rft_dat=%3Cproquest_cross%3E3127015818%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2586-76579ba2625faa219ef903ec4116dc7eb6a4e8c8137c1ff63fd14b0c29ac16af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127015818&rft_id=info:pmid/38797710&rfr_iscdi=true