Loading…

Effects of polyurethane microplastics combined with cadmium on maize growth and cadmium accumulation under different long-term fertilisation histories

Agricultural production uses different types of fertilisation treatments, typically employing the combined application of organic fertiliser (OF) or organic–inorganic fertiliser (OIF) to improve soil quality. When coupled with cadmium (Cd), microplastics (MPs) affect plant growth and Cd accumulation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2024-07, Vol.473, p.134726-134726, Article 134726
Main Authors: Zhao, Meng, Li, Yifan, Li, Congping, Wang, Xuexia, Cao, Bing, Zhang, Jiajia, Wang, Jiachen, Zou, Guoyuan, Chen, Yanhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Agricultural production uses different types of fertilisation treatments, typically employing the combined application of organic fertiliser (OF) or organic–inorganic fertiliser (OIF) to improve soil quality. When coupled with cadmium (Cd), microplastics (MPs) affect plant growth and Cd accumulation in soils treated with different fertilisers. This study systematically examined the effects of polyurethane (PU) MPs coupled with Cd on the growth characteristics, root metabolite characteristics, rhizosphere bacterial community structure, and Cd bioavailability of maize under different long-term fertilisation treatments and soil types (red/cinnamon soil). The combined effects of PU MPs and Cd on maize growth differed across fertilisation treatments. Under OF, maize plants accumulated more Cd than under OIF. The accumulation of Cd in maize plants in red soil was twice that in cinnamon soil. Under OF, PU MPs promoted Cd activation by decreasing the soil pH, while root metabolites promoted Cd adsorption sites by synthesising specific amino acids, degrading aromatic compounds, and synthesising pantothenic acid and coenzyme A. Under OF, PU MPs can lower the soil pH to promote the activation of cadmium, while root metabolites promote root growth and increase cadmium adsorption sites by synthesizing specific amino acids, degrading aromatic compounds, and synthesizing pantothenic acid and coenzyme A, hereby promoting root Cd absorption. Under OIF, PU MPs act by influencing the biosynthesis of amino acids in root metabolites, enriching energy metabolism pathways, promoting the transport and translocation of mineral nutrients, thereby amplifying the "toxic effects" of Cd. This study provides new insights into the risk assessment of PU MPs and Cd coupling under different fertilisation treatments, and suggests that the prevention and control of combined PU MPs and Cd pollution in red soil under OF treatment should receive more attention in the future. [Display omitted] •PU and Cd combination effects on maize growth differ with fertilisation histories.•Cd accumulation is higher in plants with OF treatment than OIF treatment.•The activation and root metabolite pathway OF Cd under OF treatment are the key.•The root metabolite pathway under OIF treatment is the key.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2024.134726