Loading…

Multiply robust estimation of principal causal effects with noncompliance and survival outcomes

Treatment noncompliance and censoring are two common complications in clinical trials. Motivated by the ADAPTABLE pragmatic clinical trial, we develop methods for assessing treatment effects in the presence of treatment noncompliance with a right-censored survival outcome. We classify the participan...

Full description

Saved in:
Bibliographic Details
Published in:Clinical trials (London, England) England), 2024-10, Vol.21 (5), p.553-561
Main Authors: Cheng, Chao, Guo, Yueqi, Liu, Bo, Wruck, Lisa, Li, Fan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c250t-daaf21b557e1a1b8febaea430597afaf03980c634cf453053f459778988627933
container_end_page 561
container_issue 5
container_start_page 553
container_title Clinical trials (London, England)
container_volume 21
creator Cheng, Chao
Guo, Yueqi
Liu, Bo
Wruck, Lisa
Li, Fan
Li, Fan
description Treatment noncompliance and censoring are two common complications in clinical trials. Motivated by the ADAPTABLE pragmatic clinical trial, we develop methods for assessing treatment effects in the presence of treatment noncompliance with a right-censored survival outcome. We classify the participants into principal strata, defined by their joint potential compliance status under treatment and control. We propose a multiply robust estimator for the causal effects on the survival probability scale within each principal stratum. This estimator is consistent even if one, sometimes two, of the four working models—on the treatment assignment, the principal strata, censoring, and the outcome—is misspecified. A sensitivity analysis strategy is developed to address violations of key identification assumptions, the principal ignorability and monotonicity. We apply the proposed approach to the ADAPTABLE trial to study the causal effect of taking low- versus high-dosage aspirin on all-cause mortality and hospitalization from cardiovascular diseases.
doi_str_mv 10.1177/17407745241251773
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3062529772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_17407745241251773</sage_id><sourcerecordid>3122214821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-daaf21b557e1a1b8febaea430597afaf03980c634cf453053f459778988627933</originalsourceid><addsrcrecordid>eNp1kMtOAyEYhYnR2Fp9ADeGxI2bVi5DYZam8ZbUuNE1YSgozQyMw1DTt5emtSYaE5JDDt_5gQPAOUYTjDm_xrxAnBeMFJiwbNADMNx4Y84ZPdzvCzYAJzEuESKCCXoMBlQITPMaAvmU6t619Rp2oUqxhyb2rlG9Cx4GC9vOee1aVUOtUsxirDW6j_DT9e_QB69D09ZOeW2g8gsYU7dyq8yF1OcjE0_BkVV1NGc7HYHXu9uX2cN4_nz_OLuZjzVhqB8vlLIEV4xxgxWuhDWVMqqgiJVcWWURLQXSU1poW7Ds0iwl56IUYkp4SekIXG3ntl34SPkTsnFRm7pW3oQUJUVTwkiOkIxe_kKXIXU-v05STAjBhSA4U3hL6S7E2BkrcxeN6tYSI7lpX_5pP2cudpNT1ZjFPvFddwYmWyCqN_Nz7f8TvwBUhozU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122214821</pqid></control><display><type>article</type><title>Multiply robust estimation of principal causal effects with noncompliance and survival outcomes</title><source>SAGE</source><creator>Cheng, Chao ; Guo, Yueqi ; Liu, Bo ; Wruck, Lisa ; Li, Fan ; Li, Fan</creator><creatorcontrib>Cheng, Chao ; Guo, Yueqi ; Liu, Bo ; Wruck, Lisa ; Li, Fan ; Li, Fan</creatorcontrib><description>Treatment noncompliance and censoring are two common complications in clinical trials. Motivated by the ADAPTABLE pragmatic clinical trial, we develop methods for assessing treatment effects in the presence of treatment noncompliance with a right-censored survival outcome. We classify the participants into principal strata, defined by their joint potential compliance status under treatment and control. We propose a multiply robust estimator for the causal effects on the survival probability scale within each principal stratum. This estimator is consistent even if one, sometimes two, of the four working models—on the treatment assignment, the principal strata, censoring, and the outcome—is misspecified. A sensitivity analysis strategy is developed to address violations of key identification assumptions, the principal ignorability and monotonicity. We apply the proposed approach to the ADAPTABLE trial to study the causal effect of taking low- versus high-dosage aspirin on all-cause mortality and hospitalization from cardiovascular diseases.</description><identifier>ISSN: 1740-7745</identifier><identifier>ISSN: 1740-7753</identifier><identifier>EISSN: 1740-7753</identifier><identifier>DOI: 10.1177/17407745241251773</identifier><identifier>PMID: 38813813</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aspirin ; Aspirin - therapeutic use ; Cardiovascular diseases ; Cardiovascular Diseases - mortality ; Causality ; Clinical trials ; Health services ; Hospitalization - statistics &amp; numerical data ; Humans ; Medication Adherence - statistics &amp; numerical data ; Models, Statistical ; Pragmatic Clinical Trials as Topic - methods ; Research Design ; Robust control ; Sensitivity analysis ; Survival ; Survival Analysis</subject><ispartof>Clinical trials (London, England), 2024-10, Vol.21 (5), p.553-561</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-daaf21b557e1a1b8febaea430597afaf03980c634cf453053f459778988627933</cites><orcidid>0000-0001-6183-1893 ; 0000-0003-3234-5874 ; 0000-0002-0949-7565 ; 0000-0003-1732-9067 ; 0000-0002-0390-3673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,79134</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38813813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Chao</creatorcontrib><creatorcontrib>Guo, Yueqi</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Wruck, Lisa</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><title>Multiply robust estimation of principal causal effects with noncompliance and survival outcomes</title><title>Clinical trials (London, England)</title><addtitle>Clin Trials</addtitle><description>Treatment noncompliance and censoring are two common complications in clinical trials. Motivated by the ADAPTABLE pragmatic clinical trial, we develop methods for assessing treatment effects in the presence of treatment noncompliance with a right-censored survival outcome. We classify the participants into principal strata, defined by their joint potential compliance status under treatment and control. We propose a multiply robust estimator for the causal effects on the survival probability scale within each principal stratum. This estimator is consistent even if one, sometimes two, of the four working models—on the treatment assignment, the principal strata, censoring, and the outcome—is misspecified. A sensitivity analysis strategy is developed to address violations of key identification assumptions, the principal ignorability and monotonicity. We apply the proposed approach to the ADAPTABLE trial to study the causal effect of taking low- versus high-dosage aspirin on all-cause mortality and hospitalization from cardiovascular diseases.</description><subject>Aspirin</subject><subject>Aspirin - therapeutic use</subject><subject>Cardiovascular diseases</subject><subject>Cardiovascular Diseases - mortality</subject><subject>Causality</subject><subject>Clinical trials</subject><subject>Health services</subject><subject>Hospitalization - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Medication Adherence - statistics &amp; numerical data</subject><subject>Models, Statistical</subject><subject>Pragmatic Clinical Trials as Topic - methods</subject><subject>Research Design</subject><subject>Robust control</subject><subject>Sensitivity analysis</subject><subject>Survival</subject><subject>Survival Analysis</subject><issn>1740-7745</issn><issn>1740-7753</issn><issn>1740-7753</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOAyEYhYnR2Fp9ADeGxI2bVi5DYZam8ZbUuNE1YSgozQyMw1DTt5emtSYaE5JDDt_5gQPAOUYTjDm_xrxAnBeMFJiwbNADMNx4Y84ZPdzvCzYAJzEuESKCCXoMBlQITPMaAvmU6t619Rp2oUqxhyb2rlG9Cx4GC9vOee1aVUOtUsxirDW6j_DT9e_QB69D09ZOeW2g8gsYU7dyq8yF1OcjE0_BkVV1NGc7HYHXu9uX2cN4_nz_OLuZjzVhqB8vlLIEV4xxgxWuhDWVMqqgiJVcWWURLQXSU1poW7Ds0iwl56IUYkp4SekIXG3ntl34SPkTsnFRm7pW3oQUJUVTwkiOkIxe_kKXIXU-v05STAjBhSA4U3hL6S7E2BkrcxeN6tYSI7lpX_5pP2cudpNT1ZjFPvFddwYmWyCqN_Nz7f8TvwBUhozU</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Cheng, Chao</creator><creator>Guo, Yueqi</creator><creator>Liu, Bo</creator><creator>Wruck, Lisa</creator><creator>Li, Fan</creator><creator>Li, Fan</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6183-1893</orcidid><orcidid>https://orcid.org/0000-0003-3234-5874</orcidid><orcidid>https://orcid.org/0000-0002-0949-7565</orcidid><orcidid>https://orcid.org/0000-0003-1732-9067</orcidid><orcidid>https://orcid.org/0000-0002-0390-3673</orcidid></search><sort><creationdate>202410</creationdate><title>Multiply robust estimation of principal causal effects with noncompliance and survival outcomes</title><author>Cheng, Chao ; Guo, Yueqi ; Liu, Bo ; Wruck, Lisa ; Li, Fan ; Li, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-daaf21b557e1a1b8febaea430597afaf03980c634cf453053f459778988627933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aspirin</topic><topic>Aspirin - therapeutic use</topic><topic>Cardiovascular diseases</topic><topic>Cardiovascular Diseases - mortality</topic><topic>Causality</topic><topic>Clinical trials</topic><topic>Health services</topic><topic>Hospitalization - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Medication Adherence - statistics &amp; numerical data</topic><topic>Models, Statistical</topic><topic>Pragmatic Clinical Trials as Topic - methods</topic><topic>Research Design</topic><topic>Robust control</topic><topic>Sensitivity analysis</topic><topic>Survival</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Chao</creatorcontrib><creatorcontrib>Guo, Yueqi</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Wruck, Lisa</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical trials (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Chao</au><au>Guo, Yueqi</au><au>Liu, Bo</au><au>Wruck, Lisa</au><au>Li, Fan</au><au>Li, Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiply robust estimation of principal causal effects with noncompliance and survival outcomes</atitle><jtitle>Clinical trials (London, England)</jtitle><addtitle>Clin Trials</addtitle><date>2024-10</date><risdate>2024</risdate><volume>21</volume><issue>5</issue><spage>553</spage><epage>561</epage><pages>553-561</pages><issn>1740-7745</issn><issn>1740-7753</issn><eissn>1740-7753</eissn><abstract>Treatment noncompliance and censoring are two common complications in clinical trials. Motivated by the ADAPTABLE pragmatic clinical trial, we develop methods for assessing treatment effects in the presence of treatment noncompliance with a right-censored survival outcome. We classify the participants into principal strata, defined by their joint potential compliance status under treatment and control. We propose a multiply robust estimator for the causal effects on the survival probability scale within each principal stratum. This estimator is consistent even if one, sometimes two, of the four working models—on the treatment assignment, the principal strata, censoring, and the outcome—is misspecified. A sensitivity analysis strategy is developed to address violations of key identification assumptions, the principal ignorability and monotonicity. We apply the proposed approach to the ADAPTABLE trial to study the causal effect of taking low- versus high-dosage aspirin on all-cause mortality and hospitalization from cardiovascular diseases.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>38813813</pmid><doi>10.1177/17407745241251773</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6183-1893</orcidid><orcidid>https://orcid.org/0000-0003-3234-5874</orcidid><orcidid>https://orcid.org/0000-0002-0949-7565</orcidid><orcidid>https://orcid.org/0000-0003-1732-9067</orcidid><orcidid>https://orcid.org/0000-0002-0390-3673</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1740-7745
ispartof Clinical trials (London, England), 2024-10, Vol.21 (5), p.553-561
issn 1740-7745
1740-7753
1740-7753
language eng
recordid cdi_proquest_miscellaneous_3062529772
source SAGE
subjects Aspirin
Aspirin - therapeutic use
Cardiovascular diseases
Cardiovascular Diseases - mortality
Causality
Clinical trials
Health services
Hospitalization - statistics & numerical data
Humans
Medication Adherence - statistics & numerical data
Models, Statistical
Pragmatic Clinical Trials as Topic - methods
Research Design
Robust control
Sensitivity analysis
Survival
Survival Analysis
title Multiply robust estimation of principal causal effects with noncompliance and survival outcomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiply%20robust%20estimation%20of%20principal%20causal%20effects%20with%20noncompliance%20and%20survival%20outcomes&rft.jtitle=Clinical%20trials%20(London,%20England)&rft.au=Cheng,%20Chao&rft.date=2024-10&rft.volume=21&rft.issue=5&rft.spage=553&rft.epage=561&rft.pages=553-561&rft.issn=1740-7745&rft.eissn=1740-7753&rft_id=info:doi/10.1177/17407745241251773&rft_dat=%3Cproquest_cross%3E3122214821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-daaf21b557e1a1b8febaea430597afaf03980c634cf453053f459778988627933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3122214821&rft_id=info:pmid/38813813&rft_sage_id=10.1177_17407745241251773&rfr_iscdi=true