Loading…
Multiply robust estimation of principal causal effects with noncompliance and survival outcomes
Treatment noncompliance and censoring are two common complications in clinical trials. Motivated by the ADAPTABLE pragmatic clinical trial, we develop methods for assessing treatment effects in the presence of treatment noncompliance with a right-censored survival outcome. We classify the participan...
Saved in:
Published in: | Clinical trials (London, England) England), 2024-10, Vol.21 (5), p.553-561 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c250t-daaf21b557e1a1b8febaea430597afaf03980c634cf453053f459778988627933 |
container_end_page | 561 |
container_issue | 5 |
container_start_page | 553 |
container_title | Clinical trials (London, England) |
container_volume | 21 |
creator | Cheng, Chao Guo, Yueqi Liu, Bo Wruck, Lisa Li, Fan Li, Fan |
description | Treatment noncompliance and censoring are two common complications in clinical trials. Motivated by the ADAPTABLE pragmatic clinical trial, we develop methods for assessing treatment effects in the presence of treatment noncompliance with a right-censored survival outcome. We classify the participants into principal strata, defined by their joint potential compliance status under treatment and control. We propose a multiply robust estimator for the causal effects on the survival probability scale within each principal stratum. This estimator is consistent even if one, sometimes two, of the four working models—on the treatment assignment, the principal strata, censoring, and the outcome—is misspecified. A sensitivity analysis strategy is developed to address violations of key identification assumptions, the principal ignorability and monotonicity. We apply the proposed approach to the ADAPTABLE trial to study the causal effect of taking low- versus high-dosage aspirin on all-cause mortality and hospitalization from cardiovascular diseases. |
doi_str_mv | 10.1177/17407745241251773 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3062529772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_17407745241251773</sage_id><sourcerecordid>3122214821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-daaf21b557e1a1b8febaea430597afaf03980c634cf453053f459778988627933</originalsourceid><addsrcrecordid>eNp1kMtOAyEYhYnR2Fp9ADeGxI2bVi5DYZam8ZbUuNE1YSgozQyMw1DTt5emtSYaE5JDDt_5gQPAOUYTjDm_xrxAnBeMFJiwbNADMNx4Y84ZPdzvCzYAJzEuESKCCXoMBlQITPMaAvmU6t619Rp2oUqxhyb2rlG9Cx4GC9vOee1aVUOtUsxirDW6j_DT9e_QB69D09ZOeW2g8gsYU7dyq8yF1OcjE0_BkVV1NGc7HYHXu9uX2cN4_nz_OLuZjzVhqB8vlLIEV4xxgxWuhDWVMqqgiJVcWWURLQXSU1poW7Ds0iwl56IUYkp4SekIXG3ntl34SPkTsnFRm7pW3oQUJUVTwkiOkIxe_kKXIXU-v05STAjBhSA4U3hL6S7E2BkrcxeN6tYSI7lpX_5pP2cudpNT1ZjFPvFddwYmWyCqN_Nz7f8TvwBUhozU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122214821</pqid></control><display><type>article</type><title>Multiply robust estimation of principal causal effects with noncompliance and survival outcomes</title><source>SAGE</source><creator>Cheng, Chao ; Guo, Yueqi ; Liu, Bo ; Wruck, Lisa ; Li, Fan ; Li, Fan</creator><creatorcontrib>Cheng, Chao ; Guo, Yueqi ; Liu, Bo ; Wruck, Lisa ; Li, Fan ; Li, Fan</creatorcontrib><description>Treatment noncompliance and censoring are two common complications in clinical trials. Motivated by the ADAPTABLE pragmatic clinical trial, we develop methods for assessing treatment effects in the presence of treatment noncompliance with a right-censored survival outcome. We classify the participants into principal strata, defined by their joint potential compliance status under treatment and control. We propose a multiply robust estimator for the causal effects on the survival probability scale within each principal stratum. This estimator is consistent even if one, sometimes two, of the four working models—on the treatment assignment, the principal strata, censoring, and the outcome—is misspecified. A sensitivity analysis strategy is developed to address violations of key identification assumptions, the principal ignorability and monotonicity. We apply the proposed approach to the ADAPTABLE trial to study the causal effect of taking low- versus high-dosage aspirin on all-cause mortality and hospitalization from cardiovascular diseases.</description><identifier>ISSN: 1740-7745</identifier><identifier>ISSN: 1740-7753</identifier><identifier>EISSN: 1740-7753</identifier><identifier>DOI: 10.1177/17407745241251773</identifier><identifier>PMID: 38813813</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aspirin ; Aspirin - therapeutic use ; Cardiovascular diseases ; Cardiovascular Diseases - mortality ; Causality ; Clinical trials ; Health services ; Hospitalization - statistics & numerical data ; Humans ; Medication Adherence - statistics & numerical data ; Models, Statistical ; Pragmatic Clinical Trials as Topic - methods ; Research Design ; Robust control ; Sensitivity analysis ; Survival ; Survival Analysis</subject><ispartof>Clinical trials (London, England), 2024-10, Vol.21 (5), p.553-561</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-daaf21b557e1a1b8febaea430597afaf03980c634cf453053f459778988627933</cites><orcidid>0000-0001-6183-1893 ; 0000-0003-3234-5874 ; 0000-0002-0949-7565 ; 0000-0003-1732-9067 ; 0000-0002-0390-3673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,79134</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38813813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Chao</creatorcontrib><creatorcontrib>Guo, Yueqi</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Wruck, Lisa</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><title>Multiply robust estimation of principal causal effects with noncompliance and survival outcomes</title><title>Clinical trials (London, England)</title><addtitle>Clin Trials</addtitle><description>Treatment noncompliance and censoring are two common complications in clinical trials. Motivated by the ADAPTABLE pragmatic clinical trial, we develop methods for assessing treatment effects in the presence of treatment noncompliance with a right-censored survival outcome. We classify the participants into principal strata, defined by their joint potential compliance status under treatment and control. We propose a multiply robust estimator for the causal effects on the survival probability scale within each principal stratum. This estimator is consistent even if one, sometimes two, of the four working models—on the treatment assignment, the principal strata, censoring, and the outcome—is misspecified. A sensitivity analysis strategy is developed to address violations of key identification assumptions, the principal ignorability and monotonicity. We apply the proposed approach to the ADAPTABLE trial to study the causal effect of taking low- versus high-dosage aspirin on all-cause mortality and hospitalization from cardiovascular diseases.</description><subject>Aspirin</subject><subject>Aspirin - therapeutic use</subject><subject>Cardiovascular diseases</subject><subject>Cardiovascular Diseases - mortality</subject><subject>Causality</subject><subject>Clinical trials</subject><subject>Health services</subject><subject>Hospitalization - statistics & numerical data</subject><subject>Humans</subject><subject>Medication Adherence - statistics & numerical data</subject><subject>Models, Statistical</subject><subject>Pragmatic Clinical Trials as Topic - methods</subject><subject>Research Design</subject><subject>Robust control</subject><subject>Sensitivity analysis</subject><subject>Survival</subject><subject>Survival Analysis</subject><issn>1740-7745</issn><issn>1740-7753</issn><issn>1740-7753</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOAyEYhYnR2Fp9ADeGxI2bVi5DYZam8ZbUuNE1YSgozQyMw1DTt5emtSYaE5JDDt_5gQPAOUYTjDm_xrxAnBeMFJiwbNADMNx4Y84ZPdzvCzYAJzEuESKCCXoMBlQITPMaAvmU6t619Rp2oUqxhyb2rlG9Cx4GC9vOee1aVUOtUsxirDW6j_DT9e_QB69D09ZOeW2g8gsYU7dyq8yF1OcjE0_BkVV1NGc7HYHXu9uX2cN4_nz_OLuZjzVhqB8vlLIEV4xxgxWuhDWVMqqgiJVcWWURLQXSU1poW7Ds0iwl56IUYkp4SekIXG3ntl34SPkTsnFRm7pW3oQUJUVTwkiOkIxe_kKXIXU-v05STAjBhSA4U3hL6S7E2BkrcxeN6tYSI7lpX_5pP2cudpNT1ZjFPvFddwYmWyCqN_Nz7f8TvwBUhozU</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Cheng, Chao</creator><creator>Guo, Yueqi</creator><creator>Liu, Bo</creator><creator>Wruck, Lisa</creator><creator>Li, Fan</creator><creator>Li, Fan</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6183-1893</orcidid><orcidid>https://orcid.org/0000-0003-3234-5874</orcidid><orcidid>https://orcid.org/0000-0002-0949-7565</orcidid><orcidid>https://orcid.org/0000-0003-1732-9067</orcidid><orcidid>https://orcid.org/0000-0002-0390-3673</orcidid></search><sort><creationdate>202410</creationdate><title>Multiply robust estimation of principal causal effects with noncompliance and survival outcomes</title><author>Cheng, Chao ; Guo, Yueqi ; Liu, Bo ; Wruck, Lisa ; Li, Fan ; Li, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-daaf21b557e1a1b8febaea430597afaf03980c634cf453053f459778988627933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aspirin</topic><topic>Aspirin - therapeutic use</topic><topic>Cardiovascular diseases</topic><topic>Cardiovascular Diseases - mortality</topic><topic>Causality</topic><topic>Clinical trials</topic><topic>Health services</topic><topic>Hospitalization - statistics & numerical data</topic><topic>Humans</topic><topic>Medication Adherence - statistics & numerical data</topic><topic>Models, Statistical</topic><topic>Pragmatic Clinical Trials as Topic - methods</topic><topic>Research Design</topic><topic>Robust control</topic><topic>Sensitivity analysis</topic><topic>Survival</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Chao</creatorcontrib><creatorcontrib>Guo, Yueqi</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Wruck, Lisa</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical trials (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Chao</au><au>Guo, Yueqi</au><au>Liu, Bo</au><au>Wruck, Lisa</au><au>Li, Fan</au><au>Li, Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiply robust estimation of principal causal effects with noncompliance and survival outcomes</atitle><jtitle>Clinical trials (London, England)</jtitle><addtitle>Clin Trials</addtitle><date>2024-10</date><risdate>2024</risdate><volume>21</volume><issue>5</issue><spage>553</spage><epage>561</epage><pages>553-561</pages><issn>1740-7745</issn><issn>1740-7753</issn><eissn>1740-7753</eissn><abstract>Treatment noncompliance and censoring are two common complications in clinical trials. Motivated by the ADAPTABLE pragmatic clinical trial, we develop methods for assessing treatment effects in the presence of treatment noncompliance with a right-censored survival outcome. We classify the participants into principal strata, defined by their joint potential compliance status under treatment and control. We propose a multiply robust estimator for the causal effects on the survival probability scale within each principal stratum. This estimator is consistent even if one, sometimes two, of the four working models—on the treatment assignment, the principal strata, censoring, and the outcome—is misspecified. A sensitivity analysis strategy is developed to address violations of key identification assumptions, the principal ignorability and monotonicity. We apply the proposed approach to the ADAPTABLE trial to study the causal effect of taking low- versus high-dosage aspirin on all-cause mortality and hospitalization from cardiovascular diseases.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>38813813</pmid><doi>10.1177/17407745241251773</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6183-1893</orcidid><orcidid>https://orcid.org/0000-0003-3234-5874</orcidid><orcidid>https://orcid.org/0000-0002-0949-7565</orcidid><orcidid>https://orcid.org/0000-0003-1732-9067</orcidid><orcidid>https://orcid.org/0000-0002-0390-3673</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1740-7745 |
ispartof | Clinical trials (London, England), 2024-10, Vol.21 (5), p.553-561 |
issn | 1740-7745 1740-7753 1740-7753 |
language | eng |
recordid | cdi_proquest_miscellaneous_3062529772 |
source | SAGE |
subjects | Aspirin Aspirin - therapeutic use Cardiovascular diseases Cardiovascular Diseases - mortality Causality Clinical trials Health services Hospitalization - statistics & numerical data Humans Medication Adherence - statistics & numerical data Models, Statistical Pragmatic Clinical Trials as Topic - methods Research Design Robust control Sensitivity analysis Survival Survival Analysis |
title | Multiply robust estimation of principal causal effects with noncompliance and survival outcomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiply%20robust%20estimation%20of%20principal%20causal%20effects%20with%20noncompliance%20and%20survival%20outcomes&rft.jtitle=Clinical%20trials%20(London,%20England)&rft.au=Cheng,%20Chao&rft.date=2024-10&rft.volume=21&rft.issue=5&rft.spage=553&rft.epage=561&rft.pages=553-561&rft.issn=1740-7745&rft.eissn=1740-7753&rft_id=info:doi/10.1177/17407745241251773&rft_dat=%3Cproquest_cross%3E3122214821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-daaf21b557e1a1b8febaea430597afaf03980c634cf453053f459778988627933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3122214821&rft_id=info:pmid/38813813&rft_sage_id=10.1177_17407745241251773&rfr_iscdi=true |