Loading…
Highly efficient silicon modulator via a slow-wave Michelson structure
The weak free carrier dispersion effect significantly hinders the adoption of silicon modulators in low-power applications. While various structures have been demonstrated to reduce the half-wave voltage, it is always challenging to balance the trade-off between modulation efficiency and the bandwid...
Saved in:
Published in: | Optics letters 2024-06, Vol.49 (11), p.3202 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The weak free carrier dispersion effect significantly hinders the adoption of silicon modulators in low-power applications. While various structures have been demonstrated to reduce the half-wave voltage, it is always challenging to balance the trade-off between modulation efficiency and the bandwidth. Here, we demonstrated a slow-wave Michelson structure with 1-mm-long active length. The modulator was designed at the emerging 2-μm wave band which has a stronger free carrier effect. A record high modulation efficiency of 0.29 V·cm was achieved under a carrier depletion mode. The T-rail traveling wave electrodes were designed to improve the modulation bandwidth to 13.3 GHz. Up to 20 Gb/s intensity modulation was achieved at a wavelength of 1976 nm. |
---|---|
ISSN: | 0146-9592 1539-4794 1539-4794 |
DOI: | 10.1364/OL.527292 |