Loading…

Co-exposure of decabromodiphenyl ethane and polystyrene nanoplastics damages grass carp (Ctenopharyngodon idella) hepatocytes: Focus on the role of oxidative stress, ferroptosis, and inflammatory reaction

Decabromodiphenyl ethane (DBDPE) and polystyrene nanoplastics (PS-NPs) are emerging pollutants that seriously threaten the ecological safety of the aquatic environment. However, the hepatotoxicity effect of their combined exposure on aquatic organisms has not been reported to date. In, this study, t...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2024-08, Vol.940, p.173575, Article 173575
Main Authors: Shi, Bendong, Xu, Tong, Chen, Ting, Xu, Shiwen, Yao, Yujie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Decabromodiphenyl ethane (DBDPE) and polystyrene nanoplastics (PS-NPs) are emerging pollutants that seriously threaten the ecological safety of the aquatic environment. However, the hepatotoxicity effect of their combined exposure on aquatic organisms has not been reported to date. In, this study, the effects of single or co-exposure of DBDPE and PS-NPs on grass carp hepatocytes were explored and biomarkers related to oxidative stress, ferroptosis, and inflammatory cytokines were evaluated. The results show that both single and co-exposure to DBDPE and PS-NPs caused oxidative stress. Oxidative stress was induced by increasing the contents of pro-oxidation factors (ROS, MDA, and LPO), inhibiting the activity of antioxidant enzymes (CAT, GPX, T-SOD, GSH, and T-AOC), and downregulating the mRNA expressions of antioxidant genes (GPX1, GSTO1, SOD1, and CAT); the effects of combined exposure were stronger overall. Both single and co-exposure to DBDPE and PS-NPs also elevated Fe2+ content, promoted the expressions of TFR1, STEAP3, and NCOA4, and inhibited the expressions of FTH1, SLC7A11, GCLC, GSS, and GPX4; these effects resulted in iron overload-induced ferroptosis, where co-exposure had stronger adverse effects on ferroptosis-related biomarkers than single exposure. Moreover, single or co-exposure enhanced inflammatory cytokine levels, as evidenced by increased mRNA expressions of IL-6, IL-12, IL-17, IL-18, IL-1β, TNF-α, IFN-γ, and MPO. Co-exposure exhibited higher expression of pro-inflammatory cytokines compared to single exposure. Interestingly, the ferroptosis inhibitor ferrostatin-1 intervention diminished the above changes. In brief, the results suggest that DBDPE and PS-NPs trigger elevated levels of inflammatory cytokines in grass crap hepatocytes. This elevation is achieved via oxidative stress and iron overload-mediated ferroptosis, where cytotoxicity was stronger under co-exposure compared to single exposure. Overall, the findings contribute to elucidating the potential hepatotoxicity mechanisms in aquatic organisms caused by co-exposure to DBDPE and PS-NPs. [Display omitted] •DBDPE or/and PS-NPs exposure induce cytotoxicity in grass carp hepatocytes.•DBDPE and PS-NPs co-exposure aggravates oxidative stress and iron overload.•DBDPE and PS-NPs co-exposure promotes inflammation by causing ferroptosis.
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.173575