Loading…

Highly sulfonated poly ether ether ketone chelated with Cu2+ as a proton exchange membrane at sub-zero temperatures

[Display omitted] •Cu2+-chelated SPEEK membrane with high IEC is prepared.•High mechanical and dimensional stability are observed for SPEEK-Cu membrane.•Proton conductivity of SPEEK-based membranes reaches 0.074 S/cm at −25 °C.•Water states of samples at subzero temperatures are quantified via DSC a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2024-10, Vol.672, p.21-31
Main Authors: Li, Xu, Qian, Libing, Zhang, Dongwei, Zhang, Haoliang, Yang, Lan, Song, Guoqing, Han, Jinzhao, Li, Jingjing, Chen, Zhiyuan, Fang, Pengfei, He, Chunqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •Cu2+-chelated SPEEK membrane with high IEC is prepared.•High mechanical and dimensional stability are observed for SPEEK-Cu membrane.•Proton conductivity of SPEEK-based membranes reaches 0.074 S/cm at −25 °C.•Water states of samples at subzero temperatures are quantified via DSC analysis.•SPEEK-Cu membrane possesses a stronger anti-freezing property. Improving the proton conductivity (σ) of proton exchange membranes at low temperatures is very important for expanding their application areas. Here, sulfonated poly ether ether ketone (SPEEK) membranes were prepared with different sulfonation degrees, and its maximum ion exchange capacity is 3.15 mmol/g for 10 h at 60 °C. Highly sulfonated SPEEK membrane exhibits ultra-high water uptake and excellent proton conductivity of 0.074 S/cm at −25 °C due to its abundant −SO3H. Nevertheless, its high swelling ratio and low mechanical strength are not conducive to the practical application of the membrane. Luckily, by employing the chelation of Cu2+ with −SO3− on the SPEEK chain, Cu2+-coordinated SPEEK membranes were prepared, and they not only retain high −SO3H content but also possess robust mechanical properties and good dimensional stability compared to pristine SPEEK membrane. Meanwhile, the σ of the SPEEK-Cu membrane reaches 0.054 S/cm at −25 °C, and its fuel cell maximum power (Wmax) reaches 0.42 W/cm2 at −10 °C, demonstrating superior low-temperature performance in comparison to other reported materials. Particularly, water states in the prepared membranes are quantified by low-temperature differential scanning calorimetry. Because much more water bound to the plentiful −SO3H and Cu2+ inside the membrane endows it with anti-freezing performance, the decay of the σ and the Wmax for the SPEEK-Cu membrane is retarded at sub-zero temperatures. It is envisioned that composite membranes comprising metal ions such as Cu2+-SPEEK have a high potential for sub-zero fuel cell applications.
ISSN:0021-9797
1095-7103
1095-7103
DOI:10.1016/j.jcis.2024.05.215