Loading…

Development and Validation of a Machine Learning Model for Bone Metastasis in Prostate Cancer: Based on Inflammatory and Nutritional Indicators

To establish a predictive model for prostate cancer bone metastasis utilizing multiple machine learning algorithms. Retrospective analysis of the clinical data of prostate cancer initially diagnosed in the Department of Urology of Gansu Provincial People's Hospital from June 2017 to June 2022....

Full description

Saved in:
Bibliographic Details
Published in:Urology (Ridgewood, N.J.) N.J.), 2024-08, Vol.190, p.63-70
Main Authors: Jin, Tongtong, An, Jingjing, Wu, Wangjian, Zhou, Fenghai
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c243t-eba0aef494752ac5b38bd62b1374c24e42562790ea78b6fbc91bed50e238bb4b3
container_end_page 70
container_issue
container_start_page 63
container_title Urology (Ridgewood, N.J.)
container_volume 190
creator Jin, Tongtong
An, Jingjing
Wu, Wangjian
Zhou, Fenghai
description To establish a predictive model for prostate cancer bone metastasis utilizing multiple machine learning algorithms. Retrospective analysis of the clinical data of prostate cancer initially diagnosed in the Department of Urology of Gansu Provincial People's Hospital from June 2017 to June 2022. Logistic regression (LR) and least absolute shrinkage and selection operator (LASSO) are used to jointly screen the model features. The filtered features are incorporated into algorithms including LR, random forest (RF), extreme gradient boosting (XGBoost), naive Bayes (NB), k-nearest neighbor (KNN), and decision tree (DT), to develop prostate cancer bone metastasis models. A total of 404 patients were finally screened. Gleason score, T stage, N stage, PSA, and ALP were used as features for modeling. The average AUC of the 5-fold cross-validation for each machine learning model in the training set is as follows: LR (AUC=0.9054), RF (AUC=0.9032), NB (AUC=0.8961), KNN (AUC=0.8704), DT (AUC=0.8526), XGBoost (AUC=0.8066). The AUC of each machine learning model in the test set is KNN (AUC=0.9390, 95%CI: 0.8760-1), RF (AUC=0.9290, 95%CI: 0.8718-0.9861), NB (AUC=0.9268, 95%CI: 0.8615-0.9920), LR (AUC=0.9212, 95%CI: 0.8506-0.9917), XGBoost (AUC=0.8292, 95%CI: 0.7442-0.9141), DT (AUC=0.8057, 95%CI: 0.7100-0.9014). A comprehensive evaluation showed that LR performed well in interpretability and clinical applications. A bone metastasis model of prostate cancer was established, and it was observed that indicators such as inflammation and nutrition had a weak correlation with bone metastasis.
doi_str_mv 10.1016/j.urology.2024.05.027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3064143248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0090429524004151</els_id><sourcerecordid>3064143248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-eba0aef494752ac5b38bd62b1374c24e42562790ea78b6fbc91bed50e238bb4b3</originalsourceid><addsrcrecordid>eNqFkc-O0zAQxi0EYrsLjwDykUuC49j5wwWxZYGVWuAAXK2xPVlcJXbXTlbqU_DKuLRwRRrJGs9v5tPMR8iLipUVq5rXu3KJYQx3h5IzLkomS8bbR2RVSd4Wfd_Lx2TFWM8KwXt5QS5T2jHGmqZpn5KLuuu4ZJ1ckV_v8QHHsJ_QzxS8pT9gdBZmFzwNAwW6BfPTeaQbhOidv6PbYHGkQ4j0OuT_Lc6QcrhEnadfY8jJjHQN3mB8Q68hoaV52K0fRpgmmEM8_BH6vMzRHXVgzEXrzLGUnpEnA4wJn5_fK_L9w8239adi8-Xj7frdpjBc1HOBGhjgIHrRSg5G6rrTtuG6qluRCRRcNrztGULb6WbQpq80WsmQZ1ALXV-RV6e5-xjuF0yzmlwyOI7gMSxJ1awRlai56DIqT6jJy6WIg9pHN0E8qIqpoxdqp85eqKMXikmVvch9L88Si57Q_uv6e_wMvD0BmBd9cBhVMg7z3ayLaGZlg_uPxG-q6aAd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064143248</pqid></control><display><type>article</type><title>Development and Validation of a Machine Learning Model for Bone Metastasis in Prostate Cancer: Based on Inflammatory and Nutritional Indicators</title><source>Elsevier</source><creator>Jin, Tongtong ; An, Jingjing ; Wu, Wangjian ; Zhou, Fenghai</creator><creatorcontrib>Jin, Tongtong ; An, Jingjing ; Wu, Wangjian ; Zhou, Fenghai</creatorcontrib><description>To establish a predictive model for prostate cancer bone metastasis utilizing multiple machine learning algorithms. Retrospective analysis of the clinical data of prostate cancer initially diagnosed in the Department of Urology of Gansu Provincial People's Hospital from June 2017 to June 2022. Logistic regression (LR) and least absolute shrinkage and selection operator (LASSO) are used to jointly screen the model features. The filtered features are incorporated into algorithms including LR, random forest (RF), extreme gradient boosting (XGBoost), naive Bayes (NB), k-nearest neighbor (KNN), and decision tree (DT), to develop prostate cancer bone metastasis models. A total of 404 patients were finally screened. Gleason score, T stage, N stage, PSA, and ALP were used as features for modeling. The average AUC of the 5-fold cross-validation for each machine learning model in the training set is as follows: LR (AUC=0.9054), RF (AUC=0.9032), NB (AUC=0.8961), KNN (AUC=0.8704), DT (AUC=0.8526), XGBoost (AUC=0.8066). The AUC of each machine learning model in the test set is KNN (AUC=0.9390, 95%CI: 0.8760-1), RF (AUC=0.9290, 95%CI: 0.8718-0.9861), NB (AUC=0.9268, 95%CI: 0.8615-0.9920), LR (AUC=0.9212, 95%CI: 0.8506-0.9917), XGBoost (AUC=0.8292, 95%CI: 0.7442-0.9141), DT (AUC=0.8057, 95%CI: 0.7100-0.9014). A comprehensive evaluation showed that LR performed well in interpretability and clinical applications. A bone metastasis model of prostate cancer was established, and it was observed that indicators such as inflammation and nutrition had a weak correlation with bone metastasis.</description><identifier>ISSN: 0090-4295</identifier><identifier>ISSN: 1527-9995</identifier><identifier>EISSN: 1527-9995</identifier><identifier>DOI: 10.1016/j.urology.2024.05.027</identifier><identifier>PMID: 38825085</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Urology (Ridgewood, N.J.), 2024-08, Vol.190, p.63-70</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-eba0aef494752ac5b38bd62b1374c24e42562790ea78b6fbc91bed50e238bb4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38825085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Tongtong</creatorcontrib><creatorcontrib>An, Jingjing</creatorcontrib><creatorcontrib>Wu, Wangjian</creatorcontrib><creatorcontrib>Zhou, Fenghai</creatorcontrib><title>Development and Validation of a Machine Learning Model for Bone Metastasis in Prostate Cancer: Based on Inflammatory and Nutritional Indicators</title><title>Urology (Ridgewood, N.J.)</title><addtitle>Urology</addtitle><description>To establish a predictive model for prostate cancer bone metastasis utilizing multiple machine learning algorithms. Retrospective analysis of the clinical data of prostate cancer initially diagnosed in the Department of Urology of Gansu Provincial People's Hospital from June 2017 to June 2022. Logistic regression (LR) and least absolute shrinkage and selection operator (LASSO) are used to jointly screen the model features. The filtered features are incorporated into algorithms including LR, random forest (RF), extreme gradient boosting (XGBoost), naive Bayes (NB), k-nearest neighbor (KNN), and decision tree (DT), to develop prostate cancer bone metastasis models. A total of 404 patients were finally screened. Gleason score, T stage, N stage, PSA, and ALP were used as features for modeling. The average AUC of the 5-fold cross-validation for each machine learning model in the training set is as follows: LR (AUC=0.9054), RF (AUC=0.9032), NB (AUC=0.8961), KNN (AUC=0.8704), DT (AUC=0.8526), XGBoost (AUC=0.8066). The AUC of each machine learning model in the test set is KNN (AUC=0.9390, 95%CI: 0.8760-1), RF (AUC=0.9290, 95%CI: 0.8718-0.9861), NB (AUC=0.9268, 95%CI: 0.8615-0.9920), LR (AUC=0.9212, 95%CI: 0.8506-0.9917), XGBoost (AUC=0.8292, 95%CI: 0.7442-0.9141), DT (AUC=0.8057, 95%CI: 0.7100-0.9014). A comprehensive evaluation showed that LR performed well in interpretability and clinical applications. A bone metastasis model of prostate cancer was established, and it was observed that indicators such as inflammation and nutrition had a weak correlation with bone metastasis.</description><issn>0090-4295</issn><issn>1527-9995</issn><issn>1527-9995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc-O0zAQxi0EYrsLjwDykUuC49j5wwWxZYGVWuAAXK2xPVlcJXbXTlbqU_DKuLRwRRrJGs9v5tPMR8iLipUVq5rXu3KJYQx3h5IzLkomS8bbR2RVSd4Wfd_Lx2TFWM8KwXt5QS5T2jHGmqZpn5KLuuu4ZJ1ckV_v8QHHsJ_QzxS8pT9gdBZmFzwNAwW6BfPTeaQbhOidv6PbYHGkQ4j0OuT_Lc6QcrhEnadfY8jJjHQN3mB8Q68hoaV52K0fRpgmmEM8_BH6vMzRHXVgzEXrzLGUnpEnA4wJn5_fK_L9w8239adi8-Xj7frdpjBc1HOBGhjgIHrRSg5G6rrTtuG6qluRCRRcNrztGULb6WbQpq80WsmQZ1ALXV-RV6e5-xjuF0yzmlwyOI7gMSxJ1awRlai56DIqT6jJy6WIg9pHN0E8qIqpoxdqp85eqKMXikmVvch9L88Si57Q_uv6e_wMvD0BmBd9cBhVMg7z3ayLaGZlg_uPxG-q6aAd</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Jin, Tongtong</creator><creator>An, Jingjing</creator><creator>Wu, Wangjian</creator><creator>Zhou, Fenghai</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240801</creationdate><title>Development and Validation of a Machine Learning Model for Bone Metastasis in Prostate Cancer: Based on Inflammatory and Nutritional Indicators</title><author>Jin, Tongtong ; An, Jingjing ; Wu, Wangjian ; Zhou, Fenghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-eba0aef494752ac5b38bd62b1374c24e42562790ea78b6fbc91bed50e238bb4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Tongtong</creatorcontrib><creatorcontrib>An, Jingjing</creatorcontrib><creatorcontrib>Wu, Wangjian</creatorcontrib><creatorcontrib>Zhou, Fenghai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Urology (Ridgewood, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Tongtong</au><au>An, Jingjing</au><au>Wu, Wangjian</au><au>Zhou, Fenghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Validation of a Machine Learning Model for Bone Metastasis in Prostate Cancer: Based on Inflammatory and Nutritional Indicators</atitle><jtitle>Urology (Ridgewood, N.J.)</jtitle><addtitle>Urology</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>190</volume><spage>63</spage><epage>70</epage><pages>63-70</pages><issn>0090-4295</issn><issn>1527-9995</issn><eissn>1527-9995</eissn><abstract>To establish a predictive model for prostate cancer bone metastasis utilizing multiple machine learning algorithms. Retrospective analysis of the clinical data of prostate cancer initially diagnosed in the Department of Urology of Gansu Provincial People's Hospital from June 2017 to June 2022. Logistic regression (LR) and least absolute shrinkage and selection operator (LASSO) are used to jointly screen the model features. The filtered features are incorporated into algorithms including LR, random forest (RF), extreme gradient boosting (XGBoost), naive Bayes (NB), k-nearest neighbor (KNN), and decision tree (DT), to develop prostate cancer bone metastasis models. A total of 404 patients were finally screened. Gleason score, T stage, N stage, PSA, and ALP were used as features for modeling. The average AUC of the 5-fold cross-validation for each machine learning model in the training set is as follows: LR (AUC=0.9054), RF (AUC=0.9032), NB (AUC=0.8961), KNN (AUC=0.8704), DT (AUC=0.8526), XGBoost (AUC=0.8066). The AUC of each machine learning model in the test set is KNN (AUC=0.9390, 95%CI: 0.8760-1), RF (AUC=0.9290, 95%CI: 0.8718-0.9861), NB (AUC=0.9268, 95%CI: 0.8615-0.9920), LR (AUC=0.9212, 95%CI: 0.8506-0.9917), XGBoost (AUC=0.8292, 95%CI: 0.7442-0.9141), DT (AUC=0.8057, 95%CI: 0.7100-0.9014). A comprehensive evaluation showed that LR performed well in interpretability and clinical applications. A bone metastasis model of prostate cancer was established, and it was observed that indicators such as inflammation and nutrition had a weak correlation with bone metastasis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38825085</pmid><doi>10.1016/j.urology.2024.05.027</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-4295
ispartof Urology (Ridgewood, N.J.), 2024-08, Vol.190, p.63-70
issn 0090-4295
1527-9995
1527-9995
language eng
recordid cdi_proquest_miscellaneous_3064143248
source Elsevier
title Development and Validation of a Machine Learning Model for Bone Metastasis in Prostate Cancer: Based on Inflammatory and Nutritional Indicators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Validation%20of%20a%20Machine%20Learning%20Model%20for%20Bone%20Metastasis%20in%20Prostate%20Cancer:%20Based%20on%20Inflammatory%20and%20Nutritional%20Indicators&rft.jtitle=Urology%20(Ridgewood,%20N.J.)&rft.au=Jin,%20Tongtong&rft.date=2024-08-01&rft.volume=190&rft.spage=63&rft.epage=70&rft.pages=63-70&rft.issn=0090-4295&rft.eissn=1527-9995&rft_id=info:doi/10.1016/j.urology.2024.05.027&rft_dat=%3Cproquest_cross%3E3064143248%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-eba0aef494752ac5b38bd62b1374c24e42562790ea78b6fbc91bed50e238bb4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064143248&rft_id=info:pmid/38825085&rfr_iscdi=true