Loading…
Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization
This work highlights the development of a superior cathode|electrolyte interface for the quasi solid‐state rechargeable zinc metal battery (QSS‐RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light‐assisted in situ polymerization strategy. By integrating the cathode with a th...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.20 (40), p.e2403158-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 40 |
container_start_page | e2403158 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Puthiyaveetil, Priyanka Pandinhare Torris, Arun Dilwale, Swati Kanheerampockil, Fayis Kurungot, Sreekumar |
description | This work highlights the development of a superior cathode|electrolyte interface for the quasi solid‐state rechargeable zinc metal battery (QSS‐RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light‐assisted in situ polymerization strategy. By integrating the cathode with a thin layer of the hydrogel polymer electrolyte, this technique produces an integrated interface that ensures quick Zn2+ ion conduction. The coexistence of nanowires for direct electron routes and the enhanced electrolyte ion infiltration and diffusion by the 3D porous flower structure with a wide open surface of the Zn‐MnO electrode complements the interface formation during the in situ polymerization process. The QSS‐RZMB configured with an integrated cathode (i‐Zn‐MnO) and the hydrogel polymer electrolyte (PHPZ‐30) as the separator yields a comparable specific energy density of 214.14 Wh kg−1 with that of its liquid counterpart (240.38 Wh kg−1, 0.5 M Zn(CF3SO3)2 aqueous electrolyte). Other noteworthy features of the presented QSS‐RZMB system include its superior cycle life of over 1000 charge‐discharge cycles and 85% capacity retention with 99% coulombic efficiency at the current density of 1.0 A g−1, compared to only 60% capacity retention over 500 charge‐discharge cycles displayed by the liquid‐state system under the same operating conditions.
This work details the development of an electrode‐electrolyte interface‐engineered quasi‐solid‐state rechargeable zinc metal battery (QSS‐RZMB) based on a hydrogel polymer electrolyte and a 3D porous cathode of zinc‐doped manganese oxide (Zn‐MnO) possessing an ionic interface created through an in situ polymerization approach. |
doi_str_mv | 10.1002/smll.202403158 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065275494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065275494</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2198-e623588ace11ffa304d8d92810746aeff8870b71b6ae77ae66d3d4b2b328d3323</originalsourceid><addsrcrecordid>eNpdkc9uEzEQxlcIREvhyhFZ4sIlxX82Xu8RQiCRElEU4MDF8mZnt668dur1Ci3iwCPwTn2TPgkTNY1QT-PR9_N8Hn9Z9pLRc0Ypf9t3zp1zynMq2FQ9yk6ZZGIiFS8fH8-MnmTP-v6KIsPz4ml2IpQShWTsNLuZmXQZavg9d7BNMbgxAVn6BLExWyBz31oPEK1vSTUSQxZjHUMLjlwg2kEk_99rQkREfEAxhqEnC9te3v75-z24ZFogByuyNjjeGkesR_zLYHqL1CY4W-9rQpn8sH5L1pCQem8S8uPef-nJxqbh3tz-MskG_zx70hjXw4tDPcu-fZx_nS0mq8-flrN3q8mOs1JNQHIxVQrXYqxpjKB5reqS4_cUuTTQNEoVtCpYhU1RGJCyFnVe8UpwVQvBxVn25m7uLobrAfqkO9tvwTnjAdfVgsopL6Z5mSP6-gF6FYbo8XVaMAxBCsUYUq8O1FB1UOtdtJ2Jo76PB4HyDvhpHYxHnVG9D1_vw9fH8PVmvVodO_EP0TCoKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112463811</pqid></control><display><type>article</type><title>Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Puthiyaveetil, Priyanka Pandinhare ; Torris, Arun ; Dilwale, Swati ; Kanheerampockil, Fayis ; Kurungot, Sreekumar</creator><creatorcontrib>Puthiyaveetil, Priyanka Pandinhare ; Torris, Arun ; Dilwale, Swati ; Kanheerampockil, Fayis ; Kurungot, Sreekumar</creatorcontrib><description>This work highlights the development of a superior cathode|electrolyte interface for the quasi solid‐state rechargeable zinc metal battery (QSS‐RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light‐assisted in situ polymerization strategy. By integrating the cathode with a thin layer of the hydrogel polymer electrolyte, this technique produces an integrated interface that ensures quick Zn2+ ion conduction. The coexistence of nanowires for direct electron routes and the enhanced electrolyte ion infiltration and diffusion by the 3D porous flower structure with a wide open surface of the Zn‐MnO electrode complements the interface formation during the in situ polymerization process. The QSS‐RZMB configured with an integrated cathode (i‐Zn‐MnO) and the hydrogel polymer electrolyte (PHPZ‐30) as the separator yields a comparable specific energy density of 214.14 Wh kg−1 with that of its liquid counterpart (240.38 Wh kg−1, 0.5 M Zn(CF3SO3)2 aqueous electrolyte). Other noteworthy features of the presented QSS‐RZMB system include its superior cycle life of over 1000 charge‐discharge cycles and 85% capacity retention with 99% coulombic efficiency at the current density of 1.0 A g−1, compared to only 60% capacity retention over 500 charge‐discharge cycles displayed by the liquid‐state system under the same operating conditions.
This work details the development of an electrode‐electrolyte interface‐engineered quasi‐solid‐state rechargeable zinc metal battery (QSS‐RZMB) based on a hydrogel polymer electrolyte and a 3D porous cathode of zinc‐doped manganese oxide (Zn‐MnO) possessing an ionic interface created through an in situ polymerization approach.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202403158</identifier><identifier>PMID: 38837611</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Batteries ; Cathodes ; cathode‐electrolyte interface tuning ; Charge efficiency ; dendrite inhibition ; Diffusion layers ; Discharge ; Electrode materials ; Electrolytes ; epitaxial zinc deposition ; hydrogel polymer electrolyte ; Hydrogels ; in situ polymerization ; Manganese oxides ; Nanowires ; Polymerization ; Polymers ; Porous materials ; Quasi solid‐state rechargeable zinc metal battery ; Specific energy ; Three dimensional flow ; Zinc</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (40), p.e2403158-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5446-7923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38837611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puthiyaveetil, Priyanka Pandinhare</creatorcontrib><creatorcontrib>Torris, Arun</creatorcontrib><creatorcontrib>Dilwale, Swati</creatorcontrib><creatorcontrib>Kanheerampockil, Fayis</creatorcontrib><creatorcontrib>Kurungot, Sreekumar</creatorcontrib><title>Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>This work highlights the development of a superior cathode|electrolyte interface for the quasi solid‐state rechargeable zinc metal battery (QSS‐RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light‐assisted in situ polymerization strategy. By integrating the cathode with a thin layer of the hydrogel polymer electrolyte, this technique produces an integrated interface that ensures quick Zn2+ ion conduction. The coexistence of nanowires for direct electron routes and the enhanced electrolyte ion infiltration and diffusion by the 3D porous flower structure with a wide open surface of the Zn‐MnO electrode complements the interface formation during the in situ polymerization process. The QSS‐RZMB configured with an integrated cathode (i‐Zn‐MnO) and the hydrogel polymer electrolyte (PHPZ‐30) as the separator yields a comparable specific energy density of 214.14 Wh kg−1 with that of its liquid counterpart (240.38 Wh kg−1, 0.5 M Zn(CF3SO3)2 aqueous electrolyte). Other noteworthy features of the presented QSS‐RZMB system include its superior cycle life of over 1000 charge‐discharge cycles and 85% capacity retention with 99% coulombic efficiency at the current density of 1.0 A g−1, compared to only 60% capacity retention over 500 charge‐discharge cycles displayed by the liquid‐state system under the same operating conditions.
This work details the development of an electrode‐electrolyte interface‐engineered quasi‐solid‐state rechargeable zinc metal battery (QSS‐RZMB) based on a hydrogel polymer electrolyte and a 3D porous cathode of zinc‐doped manganese oxide (Zn‐MnO) possessing an ionic interface created through an in situ polymerization approach.</description><subject>Aqueous electrolytes</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>cathode‐electrolyte interface tuning</subject><subject>Charge efficiency</subject><subject>dendrite inhibition</subject><subject>Diffusion layers</subject><subject>Discharge</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>epitaxial zinc deposition</subject><subject>hydrogel polymer electrolyte</subject><subject>Hydrogels</subject><subject>in situ polymerization</subject><subject>Manganese oxides</subject><subject>Nanowires</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Porous materials</subject><subject>Quasi solid‐state rechargeable zinc metal battery</subject><subject>Specific energy</subject><subject>Three dimensional flow</subject><subject>Zinc</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc9uEzEQxlcIREvhyhFZ4sIlxX82Xu8RQiCRElEU4MDF8mZnt668dur1Ci3iwCPwTn2TPgkTNY1QT-PR9_N8Hn9Z9pLRc0Ypf9t3zp1zynMq2FQ9yk6ZZGIiFS8fH8-MnmTP-v6KIsPz4ml2IpQShWTsNLuZmXQZavg9d7BNMbgxAVn6BLExWyBz31oPEK1vSTUSQxZjHUMLjlwg2kEk_99rQkREfEAxhqEnC9te3v75-z24ZFogByuyNjjeGkesR_zLYHqL1CY4W-9rQpn8sH5L1pCQem8S8uPef-nJxqbh3tz-MskG_zx70hjXw4tDPcu-fZx_nS0mq8-flrN3q8mOs1JNQHIxVQrXYqxpjKB5reqS4_cUuTTQNEoVtCpYhU1RGJCyFnVe8UpwVQvBxVn25m7uLobrAfqkO9tvwTnjAdfVgsopL6Z5mSP6-gF6FYbo8XVaMAxBCsUYUq8O1FB1UOtdtJ2Jo76PB4HyDvhpHYxHnVG9D1_vw9fH8PVmvVodO_EP0TCoKw</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Puthiyaveetil, Priyanka Pandinhare</creator><creator>Torris, Arun</creator><creator>Dilwale, Swati</creator><creator>Kanheerampockil, Fayis</creator><creator>Kurungot, Sreekumar</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5446-7923</orcidid></search><sort><creationdate>202410</creationdate><title>Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization</title><author>Puthiyaveetil, Priyanka Pandinhare ; Torris, Arun ; Dilwale, Swati ; Kanheerampockil, Fayis ; Kurungot, Sreekumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2198-e623588ace11ffa304d8d92810746aeff8870b71b6ae77ae66d3d4b2b328d3323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous electrolytes</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>cathode‐electrolyte interface tuning</topic><topic>Charge efficiency</topic><topic>dendrite inhibition</topic><topic>Diffusion layers</topic><topic>Discharge</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>epitaxial zinc deposition</topic><topic>hydrogel polymer electrolyte</topic><topic>Hydrogels</topic><topic>in situ polymerization</topic><topic>Manganese oxides</topic><topic>Nanowires</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Porous materials</topic><topic>Quasi solid‐state rechargeable zinc metal battery</topic><topic>Specific energy</topic><topic>Three dimensional flow</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puthiyaveetil, Priyanka Pandinhare</creatorcontrib><creatorcontrib>Torris, Arun</creatorcontrib><creatorcontrib>Dilwale, Swati</creatorcontrib><creatorcontrib>Kanheerampockil, Fayis</creatorcontrib><creatorcontrib>Kurungot, Sreekumar</creatorcontrib><collection>PubMed</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puthiyaveetil, Priyanka Pandinhare</au><au>Torris, Arun</au><au>Dilwale, Swati</au><au>Kanheerampockil, Fayis</au><au>Kurungot, Sreekumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-10</date><risdate>2024</risdate><volume>20</volume><issue>40</issue><spage>e2403158</spage><epage>n/a</epage><pages>e2403158-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>This work highlights the development of a superior cathode|electrolyte interface for the quasi solid‐state rechargeable zinc metal battery (QSS‐RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light‐assisted in situ polymerization strategy. By integrating the cathode with a thin layer of the hydrogel polymer electrolyte, this technique produces an integrated interface that ensures quick Zn2+ ion conduction. The coexistence of nanowires for direct electron routes and the enhanced electrolyte ion infiltration and diffusion by the 3D porous flower structure with a wide open surface of the Zn‐MnO electrode complements the interface formation during the in situ polymerization process. The QSS‐RZMB configured with an integrated cathode (i‐Zn‐MnO) and the hydrogel polymer electrolyte (PHPZ‐30) as the separator yields a comparable specific energy density of 214.14 Wh kg−1 with that of its liquid counterpart (240.38 Wh kg−1, 0.5 M Zn(CF3SO3)2 aqueous electrolyte). Other noteworthy features of the presented QSS‐RZMB system include its superior cycle life of over 1000 charge‐discharge cycles and 85% capacity retention with 99% coulombic efficiency at the current density of 1.0 A g−1, compared to only 60% capacity retention over 500 charge‐discharge cycles displayed by the liquid‐state system under the same operating conditions.
This work details the development of an electrode‐electrolyte interface‐engineered quasi‐solid‐state rechargeable zinc metal battery (QSS‐RZMB) based on a hydrogel polymer electrolyte and a 3D porous cathode of zinc‐doped manganese oxide (Zn‐MnO) possessing an ionic interface created through an in situ polymerization approach.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38837611</pmid><doi>10.1002/smll.202403158</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5446-7923</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (40), p.e2403158-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3065275494 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aqueous electrolytes Batteries Cathodes cathode‐electrolyte interface tuning Charge efficiency dendrite inhibition Diffusion layers Discharge Electrode materials Electrolytes epitaxial zinc deposition hydrogel polymer electrolyte Hydrogels in situ polymerization Manganese oxides Nanowires Polymerization Polymers Porous materials Quasi solid‐state rechargeable zinc metal battery Specific energy Three dimensional flow Zinc |
title | Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathode%7CElectrolyte%20Interface%20Engineering%20by%20a%20Hydrogel%20Polymer%20Electrolyte%20for%20a%203D%20Porous%20High%E2%80%90Voltage%20Cathode%20Material%20in%20a%20Quasi%E2%80%90Solid%E2%80%90State%20Zinc%20Metal%20Battery%20by%20In%20Situ%20Polymerization&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Puthiyaveetil,%20Priyanka%20Pandinhare&rft.date=2024-10&rft.volume=20&rft.issue=40&rft.spage=e2403158&rft.epage=n/a&rft.pages=e2403158-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202403158&rft_dat=%3Cproquest_pubme%3E3065275494%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2198-e623588ace11ffa304d8d92810746aeff8870b71b6ae77ae66d3d4b2b328d3323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112463811&rft_id=info:pmid/38837611&rfr_iscdi=true |