Loading…

Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization

This work highlights the development of a superior cathode|electrolyte interface for the quasi solid‐state rechargeable zinc metal battery (QSS‐RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light‐assisted in situ polymerization strategy. By integrating the cathode with a th...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.20 (40), p.e2403158-n/a
Main Authors: Puthiyaveetil, Priyanka Pandinhare, Torris, Arun, Dilwale, Swati, Kanheerampockil, Fayis, Kurungot, Sreekumar
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 40
container_start_page e2403158
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Puthiyaveetil, Priyanka Pandinhare
Torris, Arun
Dilwale, Swati
Kanheerampockil, Fayis
Kurungot, Sreekumar
description This work highlights the development of a superior cathode|electrolyte interface for the quasi solid‐state rechargeable zinc metal battery (QSS‐RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light‐assisted in situ polymerization strategy. By integrating the cathode with a thin layer of the hydrogel polymer electrolyte, this technique produces an integrated interface that ensures quick Zn2+ ion conduction. The coexistence of nanowires for direct electron routes and the enhanced electrolyte ion infiltration and diffusion by the 3D porous flower structure with a wide open surface of the Zn‐MnO electrode complements the interface formation during the in situ polymerization process. The QSS‐RZMB configured with an integrated cathode (i‐Zn‐MnO) and the hydrogel polymer electrolyte (PHPZ‐30) as the separator yields a comparable specific energy density of 214.14 Wh kg−1 with that of its liquid counterpart (240.38 Wh kg−1, 0.5 M Zn(CF3SO3)2 aqueous electrolyte). Other noteworthy features of the presented QSS‐RZMB system include its superior cycle life of over 1000 charge‐discharge cycles and 85% capacity retention with 99% coulombic efficiency at the current density of 1.0 A g−1, compared to only 60% capacity retention over 500 charge‐discharge cycles displayed by the liquid‐state system under the same operating conditions. This work details the development of an electrode‐electrolyte interface‐engineered quasi‐solid‐state rechargeable zinc metal battery (QSS‐RZMB) based on a hydrogel polymer electrolyte and a 3D porous cathode of zinc‐doped manganese oxide (Zn‐MnO) possessing an ionic interface created through an in situ polymerization approach.
doi_str_mv 10.1002/smll.202403158
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065275494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065275494</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2198-e623588ace11ffa304d8d92810746aeff8870b71b6ae77ae66d3d4b2b328d3323</originalsourceid><addsrcrecordid>eNpdkc9uEzEQxlcIREvhyhFZ4sIlxX82Xu8RQiCRElEU4MDF8mZnt668dur1Ci3iwCPwTn2TPgkTNY1QT-PR9_N8Hn9Z9pLRc0Ypf9t3zp1zynMq2FQ9yk6ZZGIiFS8fH8-MnmTP-v6KIsPz4ml2IpQShWTsNLuZmXQZavg9d7BNMbgxAVn6BLExWyBz31oPEK1vSTUSQxZjHUMLjlwg2kEk_99rQkREfEAxhqEnC9te3v75-z24ZFogByuyNjjeGkesR_zLYHqL1CY4W-9rQpn8sH5L1pCQem8S8uPef-nJxqbh3tz-MskG_zx70hjXw4tDPcu-fZx_nS0mq8-flrN3q8mOs1JNQHIxVQrXYqxpjKB5reqS4_cUuTTQNEoVtCpYhU1RGJCyFnVe8UpwVQvBxVn25m7uLobrAfqkO9tvwTnjAdfVgsopL6Z5mSP6-gF6FYbo8XVaMAxBCsUYUq8O1FB1UOtdtJ2Jo76PB4HyDvhpHYxHnVG9D1_vw9fH8PVmvVodO_EP0TCoKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112463811</pqid></control><display><type>article</type><title>Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Puthiyaveetil, Priyanka Pandinhare ; Torris, Arun ; Dilwale, Swati ; Kanheerampockil, Fayis ; Kurungot, Sreekumar</creator><creatorcontrib>Puthiyaveetil, Priyanka Pandinhare ; Torris, Arun ; Dilwale, Swati ; Kanheerampockil, Fayis ; Kurungot, Sreekumar</creatorcontrib><description>This work highlights the development of a superior cathode|electrolyte interface for the quasi solid‐state rechargeable zinc metal battery (QSS‐RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light‐assisted in situ polymerization strategy. By integrating the cathode with a thin layer of the hydrogel polymer electrolyte, this technique produces an integrated interface that ensures quick Zn2+ ion conduction. The coexistence of nanowires for direct electron routes and the enhanced electrolyte ion infiltration and diffusion by the 3D porous flower structure with a wide open surface of the Zn‐MnO electrode complements the interface formation during the in situ polymerization process. The QSS‐RZMB configured with an integrated cathode (i‐Zn‐MnO) and the hydrogel polymer electrolyte (PHPZ‐30) as the separator yields a comparable specific energy density of 214.14 Wh kg−1 with that of its liquid counterpart (240.38 Wh kg−1, 0.5 M Zn(CF3SO3)2 aqueous electrolyte). Other noteworthy features of the presented QSS‐RZMB system include its superior cycle life of over 1000 charge‐discharge cycles and 85% capacity retention with 99% coulombic efficiency at the current density of 1.0 A g−1, compared to only 60% capacity retention over 500 charge‐discharge cycles displayed by the liquid‐state system under the same operating conditions. This work details the development of an electrode‐electrolyte interface‐engineered quasi‐solid‐state rechargeable zinc metal battery (QSS‐RZMB) based on a hydrogel polymer electrolyte and a 3D porous cathode of zinc‐doped manganese oxide (Zn‐MnO) possessing an ionic interface created through an in situ polymerization approach.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202403158</identifier><identifier>PMID: 38837611</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Batteries ; Cathodes ; cathode‐electrolyte interface tuning ; Charge efficiency ; dendrite inhibition ; Diffusion layers ; Discharge ; Electrode materials ; Electrolytes ; epitaxial zinc deposition ; hydrogel polymer electrolyte ; Hydrogels ; in situ polymerization ; Manganese oxides ; Nanowires ; Polymerization ; Polymers ; Porous materials ; Quasi solid‐state rechargeable zinc metal battery ; Specific energy ; Three dimensional flow ; Zinc</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (40), p.e2403158-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5446-7923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38837611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puthiyaveetil, Priyanka Pandinhare</creatorcontrib><creatorcontrib>Torris, Arun</creatorcontrib><creatorcontrib>Dilwale, Swati</creatorcontrib><creatorcontrib>Kanheerampockil, Fayis</creatorcontrib><creatorcontrib>Kurungot, Sreekumar</creatorcontrib><title>Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>This work highlights the development of a superior cathode|electrolyte interface for the quasi solid‐state rechargeable zinc metal battery (QSS‐RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light‐assisted in situ polymerization strategy. By integrating the cathode with a thin layer of the hydrogel polymer electrolyte, this technique produces an integrated interface that ensures quick Zn2+ ion conduction. The coexistence of nanowires for direct electron routes and the enhanced electrolyte ion infiltration and diffusion by the 3D porous flower structure with a wide open surface of the Zn‐MnO electrode complements the interface formation during the in situ polymerization process. The QSS‐RZMB configured with an integrated cathode (i‐Zn‐MnO) and the hydrogel polymer electrolyte (PHPZ‐30) as the separator yields a comparable specific energy density of 214.14 Wh kg−1 with that of its liquid counterpart (240.38 Wh kg−1, 0.5 M Zn(CF3SO3)2 aqueous electrolyte). Other noteworthy features of the presented QSS‐RZMB system include its superior cycle life of over 1000 charge‐discharge cycles and 85% capacity retention with 99% coulombic efficiency at the current density of 1.0 A g−1, compared to only 60% capacity retention over 500 charge‐discharge cycles displayed by the liquid‐state system under the same operating conditions. This work details the development of an electrode‐electrolyte interface‐engineered quasi‐solid‐state rechargeable zinc metal battery (QSS‐RZMB) based on a hydrogel polymer electrolyte and a 3D porous cathode of zinc‐doped manganese oxide (Zn‐MnO) possessing an ionic interface created through an in situ polymerization approach.</description><subject>Aqueous electrolytes</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>cathode‐electrolyte interface tuning</subject><subject>Charge efficiency</subject><subject>dendrite inhibition</subject><subject>Diffusion layers</subject><subject>Discharge</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>epitaxial zinc deposition</subject><subject>hydrogel polymer electrolyte</subject><subject>Hydrogels</subject><subject>in situ polymerization</subject><subject>Manganese oxides</subject><subject>Nanowires</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Porous materials</subject><subject>Quasi solid‐state rechargeable zinc metal battery</subject><subject>Specific energy</subject><subject>Three dimensional flow</subject><subject>Zinc</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc9uEzEQxlcIREvhyhFZ4sIlxX82Xu8RQiCRElEU4MDF8mZnt668dur1Ci3iwCPwTn2TPgkTNY1QT-PR9_N8Hn9Z9pLRc0Ypf9t3zp1zynMq2FQ9yk6ZZGIiFS8fH8-MnmTP-v6KIsPz4ml2IpQShWTsNLuZmXQZavg9d7BNMbgxAVn6BLExWyBz31oPEK1vSTUSQxZjHUMLjlwg2kEk_99rQkREfEAxhqEnC9te3v75-z24ZFogByuyNjjeGkesR_zLYHqL1CY4W-9rQpn8sH5L1pCQem8S8uPef-nJxqbh3tz-MskG_zx70hjXw4tDPcu-fZx_nS0mq8-flrN3q8mOs1JNQHIxVQrXYqxpjKB5reqS4_cUuTTQNEoVtCpYhU1RGJCyFnVe8UpwVQvBxVn25m7uLobrAfqkO9tvwTnjAdfVgsopL6Z5mSP6-gF6FYbo8XVaMAxBCsUYUq8O1FB1UOtdtJ2Jo76PB4HyDvhpHYxHnVG9D1_vw9fH8PVmvVodO_EP0TCoKw</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Puthiyaveetil, Priyanka Pandinhare</creator><creator>Torris, Arun</creator><creator>Dilwale, Swati</creator><creator>Kanheerampockil, Fayis</creator><creator>Kurungot, Sreekumar</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5446-7923</orcidid></search><sort><creationdate>202410</creationdate><title>Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization</title><author>Puthiyaveetil, Priyanka Pandinhare ; Torris, Arun ; Dilwale, Swati ; Kanheerampockil, Fayis ; Kurungot, Sreekumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2198-e623588ace11ffa304d8d92810746aeff8870b71b6ae77ae66d3d4b2b328d3323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous electrolytes</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>cathode‐electrolyte interface tuning</topic><topic>Charge efficiency</topic><topic>dendrite inhibition</topic><topic>Diffusion layers</topic><topic>Discharge</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>epitaxial zinc deposition</topic><topic>hydrogel polymer electrolyte</topic><topic>Hydrogels</topic><topic>in situ polymerization</topic><topic>Manganese oxides</topic><topic>Nanowires</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Porous materials</topic><topic>Quasi solid‐state rechargeable zinc metal battery</topic><topic>Specific energy</topic><topic>Three dimensional flow</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puthiyaveetil, Priyanka Pandinhare</creatorcontrib><creatorcontrib>Torris, Arun</creatorcontrib><creatorcontrib>Dilwale, Swati</creatorcontrib><creatorcontrib>Kanheerampockil, Fayis</creatorcontrib><creatorcontrib>Kurungot, Sreekumar</creatorcontrib><collection>PubMed</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puthiyaveetil, Priyanka Pandinhare</au><au>Torris, Arun</au><au>Dilwale, Swati</au><au>Kanheerampockil, Fayis</au><au>Kurungot, Sreekumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-10</date><risdate>2024</risdate><volume>20</volume><issue>40</issue><spage>e2403158</spage><epage>n/a</epage><pages>e2403158-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>This work highlights the development of a superior cathode|electrolyte interface for the quasi solid‐state rechargeable zinc metal battery (QSS‐RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light‐assisted in situ polymerization strategy. By integrating the cathode with a thin layer of the hydrogel polymer electrolyte, this technique produces an integrated interface that ensures quick Zn2+ ion conduction. The coexistence of nanowires for direct electron routes and the enhanced electrolyte ion infiltration and diffusion by the 3D porous flower structure with a wide open surface of the Zn‐MnO electrode complements the interface formation during the in situ polymerization process. The QSS‐RZMB configured with an integrated cathode (i‐Zn‐MnO) and the hydrogel polymer electrolyte (PHPZ‐30) as the separator yields a comparable specific energy density of 214.14 Wh kg−1 with that of its liquid counterpart (240.38 Wh kg−1, 0.5 M Zn(CF3SO3)2 aqueous electrolyte). Other noteworthy features of the presented QSS‐RZMB system include its superior cycle life of over 1000 charge‐discharge cycles and 85% capacity retention with 99% coulombic efficiency at the current density of 1.0 A g−1, compared to only 60% capacity retention over 500 charge‐discharge cycles displayed by the liquid‐state system under the same operating conditions. This work details the development of an electrode‐electrolyte interface‐engineered quasi‐solid‐state rechargeable zinc metal battery (QSS‐RZMB) based on a hydrogel polymer electrolyte and a 3D porous cathode of zinc‐doped manganese oxide (Zn‐MnO) possessing an ionic interface created through an in situ polymerization approach.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38837611</pmid><doi>10.1002/smll.202403158</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5446-7923</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (40), p.e2403158-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3065275494
source Wiley-Blackwell Read & Publish Collection
subjects Aqueous electrolytes
Batteries
Cathodes
cathode‐electrolyte interface tuning
Charge efficiency
dendrite inhibition
Diffusion layers
Discharge
Electrode materials
Electrolytes
epitaxial zinc deposition
hydrogel polymer electrolyte
Hydrogels
in situ polymerization
Manganese oxides
Nanowires
Polymerization
Polymers
Porous materials
Quasi solid‐state rechargeable zinc metal battery
Specific energy
Three dimensional flow
Zinc
title Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High‐Voltage Cathode Material in a Quasi‐Solid‐State Zinc Metal Battery by In Situ Polymerization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathode%7CElectrolyte%20Interface%20Engineering%20by%20a%20Hydrogel%20Polymer%20Electrolyte%20for%20a%203D%20Porous%20High%E2%80%90Voltage%20Cathode%20Material%20in%20a%20Quasi%E2%80%90Solid%E2%80%90State%20Zinc%20Metal%20Battery%20by%20In%20Situ%20Polymerization&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Puthiyaveetil,%20Priyanka%20Pandinhare&rft.date=2024-10&rft.volume=20&rft.issue=40&rft.spage=e2403158&rft.epage=n/a&rft.pages=e2403158-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202403158&rft_dat=%3Cproquest_pubme%3E3065275494%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2198-e623588ace11ffa304d8d92810746aeff8870b71b6ae77ae66d3d4b2b328d3323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112463811&rft_id=info:pmid/38837611&rfr_iscdi=true