Loading…
Enhanced boron removal via seed-induced crystal growth of barium perborate in sequential fluidized-bed crystallization
Chemical oxo-precipitation (COP) is an enhanced precipitation method for boron removal with the conversion of boric acid to perborate anions. When using barium-based precipitant, the boron can be effectively precipitated as barium perborates (BaPBs). The phase transformation of BaPBs from amorphous...
Saved in:
Published in: | Chemosphere (Oxford) 2024-08, Vol.361, p.142569, Article 142569 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chemical oxo-precipitation (COP) is an enhanced precipitation method for boron removal with the conversion of boric acid to perborate anions. When using barium-based precipitant, the boron can be effectively precipitated as barium perborates (BaPBs). The phase transformation of BaPBs from amorphous (A-BaPB, Ba(B(OH)3OOH)2) to crystalline (C–BaPB, BaB2(OO)2(OH)4) form is crucial for effective boron removal. However, scaling up this phase transformation of BaPBs is hindered by poor diffusion. This study aims to promote the growth of C–BaPB through seed-induced crystal growth, eliminating the need for phase transformation. By examining the relationship between crystal growth rate and supersaturation, surface spiral growth was identified as the rate-limiting step of the growth of micron-sized seeds near pHpzc. To enable continuous crystal growth, granular seeds of C–BaPB were prepared and employed as the medium for fluidized-bed crystallization (FBC). The system reached steady state 3 hydraulic retention times, achieving 90% boron removal. The effect of surface loading, ionic strength, and dosages on steady-state crystal growth rate was studied, revealing a shift of the rate-limiting step in FBC to diffusion. Lastly, the system that constituted of two FBCs in-series for sequential crystallization of A-BaPB and C–BaPB was demonstrated. The integrated system provided 97.8% of boron removal from synthetic wastewater containing 500 mg-B/L, with 92.3% of boron crystallized on the granular seeds of BaPBs.
[Display omitted]
•Seed-induced crystal growth of C–BaPB enabled rapid boron removal.•Spiral surface growth was the rate-limiting step near pHpzc.•Continuous crystal growth of granular C–BaPB seeds removed 90% boron in FBC.•Two FBCs in-series eliminated boron from 500 to 8 mg-B/L, >92% on granular seeds. |
---|---|
ISSN: | 0045-6535 1879-1298 1879-1298 |
DOI: | 10.1016/j.chemosphere.2024.142569 |