Loading…

Photosynthesis and stress response of coal fly ash on stem elongation in wheat

Coal is one of the primary energy sources in China and is widely used for electricity generation. Crops growing in overlapped areas of farmland and coal resources (OAFCR) suffer from coal fly ash stress, especially during stem elongation, which is a key stage that impacts wheat yield and is sensitiv...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2024-06, Vol.31 (29), p.41980-41989
Main Authors: Wang, Shengpu, Hu, Xinpeng, Li, Bingbing, Zhang, Haojia, Xiao, Xin, Qian, Ruoxi, Huang, Xi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coal is one of the primary energy sources in China and is widely used for electricity generation. Crops growing in overlapped areas of farmland and coal resources (OAFCR) suffer from coal fly ash stress, especially during stem elongation, which is a key stage that impacts wheat yield and is sensitive to environmental stress. As a primary food crop of China, wheat is essential for food security. However, the characteristics of wheat under the combined stress of fly ash and various heavy metals have not been sufficiently investigated. In this study, we explored the response of stem elongation in wheat to different levels of coal fly ash stress and determined the content of heavy metals (HMs) in wheat leaves. We found that with an increase in fly ash content, the Cu content in the shoots increased, while that in the roots decreased. Coal fly ash exposure reduced the proportions of Pb and Zn in the cytoderm, and the proportion of Cu in the soluble constituents decreased from 58.3% to 45.7%. Total chlorophyll, chlorophyll a, and chlorophyll b levels decreased significantly, whereas peroxidase (POD) and catalase (CAT) activities generally increased with increasing fly ash dose. Meanwhile, chloroplasts, mitochondria, and their internal structures were damaged, and the cell structures of leaves, such as the internal membrane structure, were damaged.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-024-33953-z