Loading…
Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments
Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Here...
Saved in:
Published in: | Carbohydrate polymers 2024-09, Vol.340, p.122271-122271, Article 122271 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-af3b69f77b9255ac322705e6ec6abb2f1c5de328b01ee5e642b5e5f5a728a013 |
container_end_page | 122271 |
container_issue | |
container_start_page | 122271 |
container_title | Carbohydrate polymers |
container_volume | 340 |
creator | Han, Ruiheng Zeng, Fan Xia, Qingqing Pang, Xiangchao Wu, Xianzhang |
description | Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m−3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m−1), even when subjected to −40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields.
[Display omitted] |
doi_str_mv | 10.1016/j.carbpol.2024.122271 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066793215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861724004971</els_id><sourcerecordid>3066793215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-af3b69f77b9255ac322705e6ec6abb2f1c5de328b01ee5e642b5e5f5a728a013</originalsourceid><addsrcrecordid>eNqFkc-OEzEMxiMEYsvCI4By5LBT4mQyMz0htOKftBKXPXGJkoynkypNSpLpqu_AQ5OqhSu-WLK_ny37I-QtsDUw6D7s1lYnc4h-zRlv18A57-EZWcHQbxoQbfucrBi0bTN00N-QVznvWI0O2EtyI4ZBDozDivz--eRKweRicJZa9H7xMSMNOsTJGUy5MTrjSOfTmOIWfaYVmOnstjMtcdnOAXO-o1c-hnGxxR1dOd1RHSqG2mvjkVp90Mb52qAuUJtOddgZwXB0KYY9hpJfkxeT9hnfXPMtefzy-fH-W_Pw4-v3-08PjRUgSqMnYbrN1Pdmw6XUVtTTmcQObaeN4RNYOaLgg2GAWOstNxLlJHXPB81A3JL3l7GHFH8tmIvau3w-XQeMS1aCdV2_ERxklcqL1KaYc8JJHZLb63RSwNTZB7VTVx_U2Qd18aFy764rFrPH8R_19_FV8PEiqB_Fo8OksnUYLI4uoS1qjO4_K_4AD9SgLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066793215</pqid></control><display><type>article</type><title>Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments</title><source>Elsevier</source><creator>Han, Ruiheng ; Zeng, Fan ; Xia, Qingqing ; Pang, Xiangchao ; Wu, Xianzhang</creator><creatorcontrib>Han, Ruiheng ; Zeng, Fan ; Xia, Qingqing ; Pang, Xiangchao ; Wu, Xianzhang</creatorcontrib><description>Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m−3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m−1), even when subjected to −40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields.
[Display omitted]</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2024.122271</identifier><identifier>PMID: 38858021</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cellulose nanofiber ; Hydrogel ; Ionic conductivity ; Mechanical properties ; Subzero healing abilities ; Water molecular</subject><ispartof>Carbohydrate polymers, 2024-09, Vol.340, p.122271-122271, Article 122271</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c313t-af3b69f77b9255ac322705e6ec6abb2f1c5de328b01ee5e642b5e5f5a728a013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38858021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Ruiheng</creatorcontrib><creatorcontrib>Zeng, Fan</creatorcontrib><creatorcontrib>Xia, Qingqing</creatorcontrib><creatorcontrib>Pang, Xiangchao</creatorcontrib><creatorcontrib>Wu, Xianzhang</creatorcontrib><title>Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m−3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m−1), even when subjected to −40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields.
[Display omitted]</description><subject>Cellulose nanofiber</subject><subject>Hydrogel</subject><subject>Ionic conductivity</subject><subject>Mechanical properties</subject><subject>Subzero healing abilities</subject><subject>Water molecular</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc-OEzEMxiMEYsvCI4By5LBT4mQyMz0htOKftBKXPXGJkoynkypNSpLpqu_AQ5OqhSu-WLK_ny37I-QtsDUw6D7s1lYnc4h-zRlv18A57-EZWcHQbxoQbfucrBi0bTN00N-QVznvWI0O2EtyI4ZBDozDivz--eRKweRicJZa9H7xMSMNOsTJGUy5MTrjSOfTmOIWfaYVmOnstjMtcdnOAXO-o1c-hnGxxR1dOd1RHSqG2mvjkVp90Mb52qAuUJtOddgZwXB0KYY9hpJfkxeT9hnfXPMtefzy-fH-W_Pw4-v3-08PjRUgSqMnYbrN1Pdmw6XUVtTTmcQObaeN4RNYOaLgg2GAWOstNxLlJHXPB81A3JL3l7GHFH8tmIvau3w-XQeMS1aCdV2_ERxklcqL1KaYc8JJHZLb63RSwNTZB7VTVx_U2Qd18aFy764rFrPH8R_19_FV8PEiqB_Fo8OksnUYLI4uoS1qjO4_K_4AD9SgLg</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Han, Ruiheng</creator><creator>Zeng, Fan</creator><creator>Xia, Qingqing</creator><creator>Pang, Xiangchao</creator><creator>Wu, Xianzhang</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240915</creationdate><title>Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments</title><author>Han, Ruiheng ; Zeng, Fan ; Xia, Qingqing ; Pang, Xiangchao ; Wu, Xianzhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-af3b69f77b9255ac322705e6ec6abb2f1c5de328b01ee5e642b5e5f5a728a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cellulose nanofiber</topic><topic>Hydrogel</topic><topic>Ionic conductivity</topic><topic>Mechanical properties</topic><topic>Subzero healing abilities</topic><topic>Water molecular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Ruiheng</creatorcontrib><creatorcontrib>Zeng, Fan</creatorcontrib><creatorcontrib>Xia, Qingqing</creatorcontrib><creatorcontrib>Pang, Xiangchao</creatorcontrib><creatorcontrib>Wu, Xianzhang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Ruiheng</au><au>Zeng, Fan</au><au>Xia, Qingqing</au><au>Pang, Xiangchao</au><au>Wu, Xianzhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>340</volume><spage>122271</spage><epage>122271</epage><pages>122271-122271</pages><artnum>122271</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m−3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m−1), even when subjected to −40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38858021</pmid><doi>10.1016/j.carbpol.2024.122271</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2024-09, Vol.340, p.122271-122271, Article 122271 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_3066793215 |
source | Elsevier |
subjects | Cellulose nanofiber Hydrogel Ionic conductivity Mechanical properties Subzero healing abilities Water molecular |
title | Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zwitterionic%20cellulose%20nanofibers-based%20hydrogels%20with%20high%20toughness,%20ionic%20conductivity,%20and%20healable%20capability%20in%20cryogenic%20environments&rft.jtitle=Carbohydrate%20polymers&rft.au=Han,%20Ruiheng&rft.date=2024-09-15&rft.volume=340&rft.spage=122271&rft.epage=122271&rft.pages=122271-122271&rft.artnum=122271&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2024.122271&rft_dat=%3Cproquest_cross%3E3066793215%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-af3b69f77b9255ac322705e6ec6abb2f1c5de328b01ee5e642b5e5f5a728a013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3066793215&rft_id=info:pmid/38858021&rfr_iscdi=true |