Loading…

Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments

Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Here...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate polymers 2024-09, Vol.340, p.122271-122271, Article 122271
Main Authors: Han, Ruiheng, Zeng, Fan, Xia, Qingqing, Pang, Xiangchao, Wu, Xianzhang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c313t-af3b69f77b9255ac322705e6ec6abb2f1c5de328b01ee5e642b5e5f5a728a013
container_end_page 122271
container_issue
container_start_page 122271
container_title Carbohydrate polymers
container_volume 340
creator Han, Ruiheng
Zeng, Fan
Xia, Qingqing
Pang, Xiangchao
Wu, Xianzhang
description Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m−3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m−1), even when subjected to −40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields. [Display omitted]
doi_str_mv 10.1016/j.carbpol.2024.122271
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066793215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861724004971</els_id><sourcerecordid>3066793215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-af3b69f77b9255ac322705e6ec6abb2f1c5de328b01ee5e642b5e5f5a728a013</originalsourceid><addsrcrecordid>eNqFkc-OEzEMxiMEYsvCI4By5LBT4mQyMz0htOKftBKXPXGJkoynkypNSpLpqu_AQ5OqhSu-WLK_ny37I-QtsDUw6D7s1lYnc4h-zRlv18A57-EZWcHQbxoQbfucrBi0bTN00N-QVznvWI0O2EtyI4ZBDozDivz--eRKweRicJZa9H7xMSMNOsTJGUy5MTrjSOfTmOIWfaYVmOnstjMtcdnOAXO-o1c-hnGxxR1dOd1RHSqG2mvjkVp90Mb52qAuUJtOddgZwXB0KYY9hpJfkxeT9hnfXPMtefzy-fH-W_Pw4-v3-08PjRUgSqMnYbrN1Pdmw6XUVtTTmcQObaeN4RNYOaLgg2GAWOstNxLlJHXPB81A3JL3l7GHFH8tmIvau3w-XQeMS1aCdV2_ERxklcqL1KaYc8JJHZLb63RSwNTZB7VTVx_U2Qd18aFy764rFrPH8R_19_FV8PEiqB_Fo8OksnUYLI4uoS1qjO4_K_4AD9SgLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066793215</pqid></control><display><type>article</type><title>Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments</title><source>Elsevier</source><creator>Han, Ruiheng ; Zeng, Fan ; Xia, Qingqing ; Pang, Xiangchao ; Wu, Xianzhang</creator><creatorcontrib>Han, Ruiheng ; Zeng, Fan ; Xia, Qingqing ; Pang, Xiangchao ; Wu, Xianzhang</creatorcontrib><description>Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m−3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m−1), even when subjected to −40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields. [Display omitted]</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2024.122271</identifier><identifier>PMID: 38858021</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cellulose nanofiber ; Hydrogel ; Ionic conductivity ; Mechanical properties ; Subzero healing abilities ; Water molecular</subject><ispartof>Carbohydrate polymers, 2024-09, Vol.340, p.122271-122271, Article 122271</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c313t-af3b69f77b9255ac322705e6ec6abb2f1c5de328b01ee5e642b5e5f5a728a013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38858021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Ruiheng</creatorcontrib><creatorcontrib>Zeng, Fan</creatorcontrib><creatorcontrib>Xia, Qingqing</creatorcontrib><creatorcontrib>Pang, Xiangchao</creatorcontrib><creatorcontrib>Wu, Xianzhang</creatorcontrib><title>Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m−3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m−1), even when subjected to −40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields. [Display omitted]</description><subject>Cellulose nanofiber</subject><subject>Hydrogel</subject><subject>Ionic conductivity</subject><subject>Mechanical properties</subject><subject>Subzero healing abilities</subject><subject>Water molecular</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc-OEzEMxiMEYsvCI4By5LBT4mQyMz0htOKftBKXPXGJkoynkypNSpLpqu_AQ5OqhSu-WLK_ny37I-QtsDUw6D7s1lYnc4h-zRlv18A57-EZWcHQbxoQbfucrBi0bTN00N-QVznvWI0O2EtyI4ZBDozDivz--eRKweRicJZa9H7xMSMNOsTJGUy5MTrjSOfTmOIWfaYVmOnstjMtcdnOAXO-o1c-hnGxxR1dOd1RHSqG2mvjkVp90Mb52qAuUJtOddgZwXB0KYY9hpJfkxeT9hnfXPMtefzy-fH-W_Pw4-v3-08PjRUgSqMnYbrN1Pdmw6XUVtTTmcQObaeN4RNYOaLgg2GAWOstNxLlJHXPB81A3JL3l7GHFH8tmIvau3w-XQeMS1aCdV2_ERxklcqL1KaYc8JJHZLb63RSwNTZB7VTVx_U2Qd18aFy764rFrPH8R_19_FV8PEiqB_Fo8OksnUYLI4uoS1qjO4_K_4AD9SgLg</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Han, Ruiheng</creator><creator>Zeng, Fan</creator><creator>Xia, Qingqing</creator><creator>Pang, Xiangchao</creator><creator>Wu, Xianzhang</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240915</creationdate><title>Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments</title><author>Han, Ruiheng ; Zeng, Fan ; Xia, Qingqing ; Pang, Xiangchao ; Wu, Xianzhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-af3b69f77b9255ac322705e6ec6abb2f1c5de328b01ee5e642b5e5f5a728a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cellulose nanofiber</topic><topic>Hydrogel</topic><topic>Ionic conductivity</topic><topic>Mechanical properties</topic><topic>Subzero healing abilities</topic><topic>Water molecular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Ruiheng</creatorcontrib><creatorcontrib>Zeng, Fan</creatorcontrib><creatorcontrib>Xia, Qingqing</creatorcontrib><creatorcontrib>Pang, Xiangchao</creatorcontrib><creatorcontrib>Wu, Xianzhang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Ruiheng</au><au>Zeng, Fan</au><au>Xia, Qingqing</au><au>Pang, Xiangchao</au><au>Wu, Xianzhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>340</volume><spage>122271</spage><epage>122271</epage><pages>122271-122271</pages><artnum>122271</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m−3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m−1), even when subjected to −40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38858021</pmid><doi>10.1016/j.carbpol.2024.122271</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2024-09, Vol.340, p.122271-122271, Article 122271
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_3066793215
source Elsevier
subjects Cellulose nanofiber
Hydrogel
Ionic conductivity
Mechanical properties
Subzero healing abilities
Water molecular
title Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zwitterionic%20cellulose%20nanofibers-based%20hydrogels%20with%20high%20toughness,%20ionic%20conductivity,%20and%20healable%20capability%20in%20cryogenic%20environments&rft.jtitle=Carbohydrate%20polymers&rft.au=Han,%20Ruiheng&rft.date=2024-09-15&rft.volume=340&rft.spage=122271&rft.epage=122271&rft.pages=122271-122271&rft.artnum=122271&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2024.122271&rft_dat=%3Cproquest_cross%3E3066793215%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-af3b69f77b9255ac322705e6ec6abb2f1c5de328b01ee5e642b5e5f5a728a013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3066793215&rft_id=info:pmid/38858021&rfr_iscdi=true