Loading…
Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging
Background Inferring the shape and position of coronary artery poses challenges when using fluoroscopic image guidance during percutaneous coronary intervention (PCI) procedure. Although angiography enables coronary artery visualization, the use of injected contrast agent raises concerns about radia...
Saved in:
Published in: | Medical physics (Lancaster) 2024-09, Vol.51 (9), p.6103-6119 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2121-2ed226bcd28fa7d4ae4be33300ff1c2aea7acc35e6d5d3d596fded5469d4b5e33 |
container_end_page | 6119 |
container_issue | 9 |
container_start_page | 6103 |
container_title | Medical physics (Lancaster) |
container_volume | 51 |
creator | Chen, Ying Ai, Danni Yu, Yang Fan, Jingfan Yu, Wenyuan Xiao, Deqiang Lin, Yucong Yang, Jian |
description | Background
Inferring the shape and position of coronary artery poses challenges when using fluoroscopic image guidance during percutaneous coronary intervention (PCI) procedure. Although angiography enables coronary artery visualization, the use of injected contrast agent raises concerns about radiation exposure and the risk of contrast‐induced nephropathy. To address these issues, dynamic coronary roadmapping overlaid on fluoroscopic images can provide coronary visual feedback without contrast injection.
Purpose
This paper proposes a novel cardio‐respiratory motion compensation method that utilizes cardiac state synchronization and catheter motion estimation to achieve coronary roadmapping in fluoroscopic images.
Methods
For more accurate cardiac state synchronization, video frame interpolation is applied to increase the frame rate of the original limited angiographic images, resulting in higher framerate and more adequate roadmaps. The proposed method also incorporates a multi‐length cross‐correlation based adaptive electrocardiogram (ECG) matching to address irregular cardiac motion situation. Furthermore, a shape‐constrained path searching method is proposed to extract catheter structure from both fluoroscopic and angiographic image. Then catheter motion is estimated using a cascaded matching approach with an outlier removal strategy, leading to a final corrected roadmap.
Results
Evaluation of the proposed method on clinical x‐ray images demonstrates its effectiveness, achieving a 92.8% F1 score for catheter extraction on 589 fluoroscopic and angiographic images. Additionally, the method achieves a 5.6‐pixel distance error of the coronary roadmap on 164 intraoperative fluoroscopic images.
Conclusions
Overall, the proposed method achieves accurate coronary roadmapping in fluoroscopic images and shows potential to overlay accurate coronary roadmap on fluoroscopic image in assisting PCI. |
doi_str_mv | 10.1002/mp.17241 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3067914133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067914133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2121-2ed226bcd28fa7d4ae4be33300ff1c2aea7acc35e6d5d3d596fded5469d4b5e33</originalsourceid><addsrcrecordid>eNp1kMtKAzEYhYMotl7AJ5BZupma60xnKcUbVHShC1chk0uJTCYx6SDd-Qg-o09ibKu4cfXzn_NxOBwAThCcIAjxuQsTVGOKdsAY05qUFMNmF4whbGiJKWQjcJDSC4SwIgzugxGZTitWIzIGzzMRlfWf7x9Rp2CjWPq4KpxfWt8X0rug-yTWj_ExC9H3IgPRC-VECLZfFDZ73ZCdJH2wsrBOLLJ-BPaM6JI-3t5D8HR1-Ti7Kef317ezi3kpMcKoxFphXLVS4akRtaJC01YTQiA0BkkstKiFlITpSjFFFGsqo7RitGoUbVkmD8HZJjdE_zrotOTOJqm7TvTaD4kTWNUNooj8QWUum6I2PMTcNq44gvx7SO4CXw-Z0dNt6tA6rX7Bn-UyUG6AN9vp1b9B_O5hE_gFl69_lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067914133</pqid></control><display><type>article</type><title>Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging</title><source>Wiley</source><creator>Chen, Ying ; Ai, Danni ; Yu, Yang ; Fan, Jingfan ; Yu, Wenyuan ; Xiao, Deqiang ; Lin, Yucong ; Yang, Jian</creator><creatorcontrib>Chen, Ying ; Ai, Danni ; Yu, Yang ; Fan, Jingfan ; Yu, Wenyuan ; Xiao, Deqiang ; Lin, Yucong ; Yang, Jian</creatorcontrib><description>Background
Inferring the shape and position of coronary artery poses challenges when using fluoroscopic image guidance during percutaneous coronary intervention (PCI) procedure. Although angiography enables coronary artery visualization, the use of injected contrast agent raises concerns about radiation exposure and the risk of contrast‐induced nephropathy. To address these issues, dynamic coronary roadmapping overlaid on fluoroscopic images can provide coronary visual feedback without contrast injection.
Purpose
This paper proposes a novel cardio‐respiratory motion compensation method that utilizes cardiac state synchronization and catheter motion estimation to achieve coronary roadmapping in fluoroscopic images.
Methods
For more accurate cardiac state synchronization, video frame interpolation is applied to increase the frame rate of the original limited angiographic images, resulting in higher framerate and more adequate roadmaps. The proposed method also incorporates a multi‐length cross‐correlation based adaptive electrocardiogram (ECG) matching to address irregular cardiac motion situation. Furthermore, a shape‐constrained path searching method is proposed to extract catheter structure from both fluoroscopic and angiographic image. Then catheter motion is estimated using a cascaded matching approach with an outlier removal strategy, leading to a final corrected roadmap.
Results
Evaluation of the proposed method on clinical x‐ray images demonstrates its effectiveness, achieving a 92.8% F1 score for catheter extraction on 589 fluoroscopic and angiographic images. Additionally, the method achieves a 5.6‐pixel distance error of the coronary roadmap on 164 intraoperative fluoroscopic images.
Conclusions
Overall, the proposed method achieves accurate coronary roadmapping in fluoroscopic images and shows potential to overlay accurate coronary roadmap on fluoroscopic image in assisting PCI.</description><identifier>ISSN: 0094-2405</identifier><identifier>ISSN: 2473-4209</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.17241</identifier><identifier>PMID: 38865713</identifier><language>eng</language><publisher>United States</publisher><subject>cardiac state synchronization ; cardio‐respiratory motion compensation ; catheter motion estimation ; Coronary Angiography ; Coronary Vessels - diagnostic imaging ; dynamic coronary roadmapping ; Electrocardiography ; Fluoroscopy ; Heart - diagnostic imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Movement ; Respiration</subject><ispartof>Medical physics (Lancaster), 2024-09, Vol.51 (9), p.6103-6119</ispartof><rights>2024 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2121-2ed226bcd28fa7d4ae4be33300ff1c2aea7acc35e6d5d3d596fded5469d4b5e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38865713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Ai, Danni</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Fan, Jingfan</creatorcontrib><creatorcontrib>Yu, Wenyuan</creatorcontrib><creatorcontrib>Xiao, Deqiang</creatorcontrib><creatorcontrib>Lin, Yucong</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><title>Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Background
Inferring the shape and position of coronary artery poses challenges when using fluoroscopic image guidance during percutaneous coronary intervention (PCI) procedure. Although angiography enables coronary artery visualization, the use of injected contrast agent raises concerns about radiation exposure and the risk of contrast‐induced nephropathy. To address these issues, dynamic coronary roadmapping overlaid on fluoroscopic images can provide coronary visual feedback without contrast injection.
Purpose
This paper proposes a novel cardio‐respiratory motion compensation method that utilizes cardiac state synchronization and catheter motion estimation to achieve coronary roadmapping in fluoroscopic images.
Methods
For more accurate cardiac state synchronization, video frame interpolation is applied to increase the frame rate of the original limited angiographic images, resulting in higher framerate and more adequate roadmaps. The proposed method also incorporates a multi‐length cross‐correlation based adaptive electrocardiogram (ECG) matching to address irregular cardiac motion situation. Furthermore, a shape‐constrained path searching method is proposed to extract catheter structure from both fluoroscopic and angiographic image. Then catheter motion is estimated using a cascaded matching approach with an outlier removal strategy, leading to a final corrected roadmap.
Results
Evaluation of the proposed method on clinical x‐ray images demonstrates its effectiveness, achieving a 92.8% F1 score for catheter extraction on 589 fluoroscopic and angiographic images. Additionally, the method achieves a 5.6‐pixel distance error of the coronary roadmap on 164 intraoperative fluoroscopic images.
Conclusions
Overall, the proposed method achieves accurate coronary roadmapping in fluoroscopic images and shows potential to overlay accurate coronary roadmap on fluoroscopic image in assisting PCI.</description><subject>cardiac state synchronization</subject><subject>cardio‐respiratory motion compensation</subject><subject>catheter motion estimation</subject><subject>Coronary Angiography</subject><subject>Coronary Vessels - diagnostic imaging</subject><subject>dynamic coronary roadmapping</subject><subject>Electrocardiography</subject><subject>Fluoroscopy</subject><subject>Heart - diagnostic imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Movement</subject><subject>Respiration</subject><issn>0094-2405</issn><issn>2473-4209</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEYhYMotl7AJ5BZupma60xnKcUbVHShC1chk0uJTCYx6SDd-Qg-o09ibKu4cfXzn_NxOBwAThCcIAjxuQsTVGOKdsAY05qUFMNmF4whbGiJKWQjcJDSC4SwIgzugxGZTitWIzIGzzMRlfWf7x9Rp2CjWPq4KpxfWt8X0rug-yTWj_ExC9H3IgPRC-VECLZfFDZ73ZCdJH2wsrBOLLJ-BPaM6JI-3t5D8HR1-Ti7Kef317ezi3kpMcKoxFphXLVS4akRtaJC01YTQiA0BkkstKiFlITpSjFFFGsqo7RitGoUbVkmD8HZJjdE_zrotOTOJqm7TvTaD4kTWNUNooj8QWUum6I2PMTcNq44gvx7SO4CXw-Z0dNt6tA6rX7Bn-UyUG6AN9vp1b9B_O5hE_gFl69_lg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Chen, Ying</creator><creator>Ai, Danni</creator><creator>Yu, Yang</creator><creator>Fan, Jingfan</creator><creator>Yu, Wenyuan</creator><creator>Xiao, Deqiang</creator><creator>Lin, Yucong</creator><creator>Yang, Jian</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202409</creationdate><title>Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging</title><author>Chen, Ying ; Ai, Danni ; Yu, Yang ; Fan, Jingfan ; Yu, Wenyuan ; Xiao, Deqiang ; Lin, Yucong ; Yang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2121-2ed226bcd28fa7d4ae4be33300ff1c2aea7acc35e6d5d3d596fded5469d4b5e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cardiac state synchronization</topic><topic>cardio‐respiratory motion compensation</topic><topic>catheter motion estimation</topic><topic>Coronary Angiography</topic><topic>Coronary Vessels - diagnostic imaging</topic><topic>dynamic coronary roadmapping</topic><topic>Electrocardiography</topic><topic>Fluoroscopy</topic><topic>Heart - diagnostic imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Movement</topic><topic>Respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Ai, Danni</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Fan, Jingfan</creatorcontrib><creatorcontrib>Yu, Wenyuan</creatorcontrib><creatorcontrib>Xiao, Deqiang</creatorcontrib><creatorcontrib>Lin, Yucong</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ying</au><au>Ai, Danni</au><au>Yu, Yang</au><au>Fan, Jingfan</au><au>Yu, Wenyuan</au><au>Xiao, Deqiang</au><au>Lin, Yucong</au><au>Yang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2024-09</date><risdate>2024</risdate><volume>51</volume><issue>9</issue><spage>6103</spage><epage>6119</epage><pages>6103-6119</pages><issn>0094-2405</issn><issn>2473-4209</issn><eissn>2473-4209</eissn><abstract>Background
Inferring the shape and position of coronary artery poses challenges when using fluoroscopic image guidance during percutaneous coronary intervention (PCI) procedure. Although angiography enables coronary artery visualization, the use of injected contrast agent raises concerns about radiation exposure and the risk of contrast‐induced nephropathy. To address these issues, dynamic coronary roadmapping overlaid on fluoroscopic images can provide coronary visual feedback without contrast injection.
Purpose
This paper proposes a novel cardio‐respiratory motion compensation method that utilizes cardiac state synchronization and catheter motion estimation to achieve coronary roadmapping in fluoroscopic images.
Methods
For more accurate cardiac state synchronization, video frame interpolation is applied to increase the frame rate of the original limited angiographic images, resulting in higher framerate and more adequate roadmaps. The proposed method also incorporates a multi‐length cross‐correlation based adaptive electrocardiogram (ECG) matching to address irregular cardiac motion situation. Furthermore, a shape‐constrained path searching method is proposed to extract catheter structure from both fluoroscopic and angiographic image. Then catheter motion is estimated using a cascaded matching approach with an outlier removal strategy, leading to a final corrected roadmap.
Results
Evaluation of the proposed method on clinical x‐ray images demonstrates its effectiveness, achieving a 92.8% F1 score for catheter extraction on 589 fluoroscopic and angiographic images. Additionally, the method achieves a 5.6‐pixel distance error of the coronary roadmap on 164 intraoperative fluoroscopic images.
Conclusions
Overall, the proposed method achieves accurate coronary roadmapping in fluoroscopic images and shows potential to overlay accurate coronary roadmap on fluoroscopic image in assisting PCI.</abstract><cop>United States</cop><pmid>38865713</pmid><doi>10.1002/mp.17241</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2024-09, Vol.51 (9), p.6103-6119 |
issn | 0094-2405 2473-4209 2473-4209 |
language | eng |
recordid | cdi_proquest_miscellaneous_3067914133 |
source | Wiley |
subjects | cardiac state synchronization cardio‐respiratory motion compensation catheter motion estimation Coronary Angiography Coronary Vessels - diagnostic imaging dynamic coronary roadmapping Electrocardiography Fluoroscopy Heart - diagnostic imaging Humans Image Processing, Computer-Assisted - methods Movement Respiration |
title | Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardio%E2%80%90respiratory%20motion%20compensation%20for%20coronary%20roadmapping%20in%20fluoroscopic%20imaging&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Chen,%20Ying&rft.date=2024-09&rft.volume=51&rft.issue=9&rft.spage=6103&rft.epage=6119&rft.pages=6103-6119&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.17241&rft_dat=%3Cproquest_cross%3E3067914133%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2121-2ed226bcd28fa7d4ae4be33300ff1c2aea7acc35e6d5d3d596fded5469d4b5e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067914133&rft_id=info:pmid/38865713&rfr_iscdi=true |