Loading…

Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging

Background Inferring the shape and position of coronary artery poses challenges when using fluoroscopic image guidance during percutaneous coronary intervention (PCI) procedure. Although angiography enables coronary artery visualization, the use of injected contrast agent raises concerns about radia...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2024-09, Vol.51 (9), p.6103-6119
Main Authors: Chen, Ying, Ai, Danni, Yu, Yang, Fan, Jingfan, Yu, Wenyuan, Xiao, Deqiang, Lin, Yucong, Yang, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2121-2ed226bcd28fa7d4ae4be33300ff1c2aea7acc35e6d5d3d596fded5469d4b5e33
container_end_page 6119
container_issue 9
container_start_page 6103
container_title Medical physics (Lancaster)
container_volume 51
creator Chen, Ying
Ai, Danni
Yu, Yang
Fan, Jingfan
Yu, Wenyuan
Xiao, Deqiang
Lin, Yucong
Yang, Jian
description Background Inferring the shape and position of coronary artery poses challenges when using fluoroscopic image guidance during percutaneous coronary intervention (PCI) procedure. Although angiography enables coronary artery visualization, the use of injected contrast agent raises concerns about radiation exposure and the risk of contrast‐induced nephropathy. To address these issues, dynamic coronary roadmapping overlaid on fluoroscopic images can provide coronary visual feedback without contrast injection. Purpose This paper proposes a novel cardio‐respiratory motion compensation method that utilizes cardiac state synchronization and catheter motion estimation to achieve coronary roadmapping in fluoroscopic images. Methods For more accurate cardiac state synchronization, video frame interpolation is applied to increase the frame rate of the original limited angiographic images, resulting in higher framerate and more adequate roadmaps. The proposed method also incorporates a multi‐length cross‐correlation based adaptive electrocardiogram (ECG) matching to address irregular cardiac motion situation. Furthermore, a shape‐constrained path searching method is proposed to extract catheter structure from both fluoroscopic and angiographic image. Then catheter motion is estimated using a cascaded matching approach with an outlier removal strategy, leading to a final corrected roadmap. Results Evaluation of the proposed method on clinical x‐ray images demonstrates its effectiveness, achieving a 92.8% F1 score for catheter extraction on 589 fluoroscopic and angiographic images. Additionally, the method achieves a 5.6‐pixel distance error of the coronary roadmap on 164 intraoperative fluoroscopic images. Conclusions Overall, the proposed method achieves accurate coronary roadmapping in fluoroscopic images and shows potential to overlay accurate coronary roadmap on fluoroscopic image in assisting PCI.
doi_str_mv 10.1002/mp.17241
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3067914133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067914133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2121-2ed226bcd28fa7d4ae4be33300ff1c2aea7acc35e6d5d3d596fded5469d4b5e33</originalsourceid><addsrcrecordid>eNp1kMtKAzEYhYMotl7AJ5BZupma60xnKcUbVHShC1chk0uJTCYx6SDd-Qg-o09ibKu4cfXzn_NxOBwAThCcIAjxuQsTVGOKdsAY05qUFMNmF4whbGiJKWQjcJDSC4SwIgzugxGZTitWIzIGzzMRlfWf7x9Rp2CjWPq4KpxfWt8X0rug-yTWj_ExC9H3IgPRC-VECLZfFDZ73ZCdJH2wsrBOLLJ-BPaM6JI-3t5D8HR1-Ti7Kef317ezi3kpMcKoxFphXLVS4akRtaJC01YTQiA0BkkstKiFlITpSjFFFGsqo7RitGoUbVkmD8HZJjdE_zrotOTOJqm7TvTaD4kTWNUNooj8QWUum6I2PMTcNq44gvx7SO4CXw-Z0dNt6tA6rX7Bn-UyUG6AN9vp1b9B_O5hE_gFl69_lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067914133</pqid></control><display><type>article</type><title>Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging</title><source>Wiley</source><creator>Chen, Ying ; Ai, Danni ; Yu, Yang ; Fan, Jingfan ; Yu, Wenyuan ; Xiao, Deqiang ; Lin, Yucong ; Yang, Jian</creator><creatorcontrib>Chen, Ying ; Ai, Danni ; Yu, Yang ; Fan, Jingfan ; Yu, Wenyuan ; Xiao, Deqiang ; Lin, Yucong ; Yang, Jian</creatorcontrib><description>Background Inferring the shape and position of coronary artery poses challenges when using fluoroscopic image guidance during percutaneous coronary intervention (PCI) procedure. Although angiography enables coronary artery visualization, the use of injected contrast agent raises concerns about radiation exposure and the risk of contrast‐induced nephropathy. To address these issues, dynamic coronary roadmapping overlaid on fluoroscopic images can provide coronary visual feedback without contrast injection. Purpose This paper proposes a novel cardio‐respiratory motion compensation method that utilizes cardiac state synchronization and catheter motion estimation to achieve coronary roadmapping in fluoroscopic images. Methods For more accurate cardiac state synchronization, video frame interpolation is applied to increase the frame rate of the original limited angiographic images, resulting in higher framerate and more adequate roadmaps. The proposed method also incorporates a multi‐length cross‐correlation based adaptive electrocardiogram (ECG) matching to address irregular cardiac motion situation. Furthermore, a shape‐constrained path searching method is proposed to extract catheter structure from both fluoroscopic and angiographic image. Then catheter motion is estimated using a cascaded matching approach with an outlier removal strategy, leading to a final corrected roadmap. Results Evaluation of the proposed method on clinical x‐ray images demonstrates its effectiveness, achieving a 92.8% F1 score for catheter extraction on 589 fluoroscopic and angiographic images. Additionally, the method achieves a 5.6‐pixel distance error of the coronary roadmap on 164 intraoperative fluoroscopic images. Conclusions Overall, the proposed method achieves accurate coronary roadmapping in fluoroscopic images and shows potential to overlay accurate coronary roadmap on fluoroscopic image in assisting PCI.</description><identifier>ISSN: 0094-2405</identifier><identifier>ISSN: 2473-4209</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.17241</identifier><identifier>PMID: 38865713</identifier><language>eng</language><publisher>United States</publisher><subject>cardiac state synchronization ; cardio‐respiratory motion compensation ; catheter motion estimation ; Coronary Angiography ; Coronary Vessels - diagnostic imaging ; dynamic coronary roadmapping ; Electrocardiography ; Fluoroscopy ; Heart - diagnostic imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Movement ; Respiration</subject><ispartof>Medical physics (Lancaster), 2024-09, Vol.51 (9), p.6103-6119</ispartof><rights>2024 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2121-2ed226bcd28fa7d4ae4be33300ff1c2aea7acc35e6d5d3d596fded5469d4b5e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38865713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Ai, Danni</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Fan, Jingfan</creatorcontrib><creatorcontrib>Yu, Wenyuan</creatorcontrib><creatorcontrib>Xiao, Deqiang</creatorcontrib><creatorcontrib>Lin, Yucong</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><title>Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Background Inferring the shape and position of coronary artery poses challenges when using fluoroscopic image guidance during percutaneous coronary intervention (PCI) procedure. Although angiography enables coronary artery visualization, the use of injected contrast agent raises concerns about radiation exposure and the risk of contrast‐induced nephropathy. To address these issues, dynamic coronary roadmapping overlaid on fluoroscopic images can provide coronary visual feedback without contrast injection. Purpose This paper proposes a novel cardio‐respiratory motion compensation method that utilizes cardiac state synchronization and catheter motion estimation to achieve coronary roadmapping in fluoroscopic images. Methods For more accurate cardiac state synchronization, video frame interpolation is applied to increase the frame rate of the original limited angiographic images, resulting in higher framerate and more adequate roadmaps. The proposed method also incorporates a multi‐length cross‐correlation based adaptive electrocardiogram (ECG) matching to address irregular cardiac motion situation. Furthermore, a shape‐constrained path searching method is proposed to extract catheter structure from both fluoroscopic and angiographic image. Then catheter motion is estimated using a cascaded matching approach with an outlier removal strategy, leading to a final corrected roadmap. Results Evaluation of the proposed method on clinical x‐ray images demonstrates its effectiveness, achieving a 92.8% F1 score for catheter extraction on 589 fluoroscopic and angiographic images. Additionally, the method achieves a 5.6‐pixel distance error of the coronary roadmap on 164 intraoperative fluoroscopic images. Conclusions Overall, the proposed method achieves accurate coronary roadmapping in fluoroscopic images and shows potential to overlay accurate coronary roadmap on fluoroscopic image in assisting PCI.</description><subject>cardiac state synchronization</subject><subject>cardio‐respiratory motion compensation</subject><subject>catheter motion estimation</subject><subject>Coronary Angiography</subject><subject>Coronary Vessels - diagnostic imaging</subject><subject>dynamic coronary roadmapping</subject><subject>Electrocardiography</subject><subject>Fluoroscopy</subject><subject>Heart - diagnostic imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Movement</subject><subject>Respiration</subject><issn>0094-2405</issn><issn>2473-4209</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEYhYMotl7AJ5BZupma60xnKcUbVHShC1chk0uJTCYx6SDd-Qg-o09ibKu4cfXzn_NxOBwAThCcIAjxuQsTVGOKdsAY05qUFMNmF4whbGiJKWQjcJDSC4SwIgzugxGZTitWIzIGzzMRlfWf7x9Rp2CjWPq4KpxfWt8X0rug-yTWj_ExC9H3IgPRC-VECLZfFDZ73ZCdJH2wsrBOLLJ-BPaM6JI-3t5D8HR1-Ti7Kef317ezi3kpMcKoxFphXLVS4akRtaJC01YTQiA0BkkstKiFlITpSjFFFGsqo7RitGoUbVkmD8HZJjdE_zrotOTOJqm7TvTaD4kTWNUNooj8QWUum6I2PMTcNq44gvx7SO4CXw-Z0dNt6tA6rX7Bn-UyUG6AN9vp1b9B_O5hE_gFl69_lg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Chen, Ying</creator><creator>Ai, Danni</creator><creator>Yu, Yang</creator><creator>Fan, Jingfan</creator><creator>Yu, Wenyuan</creator><creator>Xiao, Deqiang</creator><creator>Lin, Yucong</creator><creator>Yang, Jian</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202409</creationdate><title>Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging</title><author>Chen, Ying ; Ai, Danni ; Yu, Yang ; Fan, Jingfan ; Yu, Wenyuan ; Xiao, Deqiang ; Lin, Yucong ; Yang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2121-2ed226bcd28fa7d4ae4be33300ff1c2aea7acc35e6d5d3d596fded5469d4b5e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cardiac state synchronization</topic><topic>cardio‐respiratory motion compensation</topic><topic>catheter motion estimation</topic><topic>Coronary Angiography</topic><topic>Coronary Vessels - diagnostic imaging</topic><topic>dynamic coronary roadmapping</topic><topic>Electrocardiography</topic><topic>Fluoroscopy</topic><topic>Heart - diagnostic imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Movement</topic><topic>Respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Ai, Danni</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Fan, Jingfan</creatorcontrib><creatorcontrib>Yu, Wenyuan</creatorcontrib><creatorcontrib>Xiao, Deqiang</creatorcontrib><creatorcontrib>Lin, Yucong</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ying</au><au>Ai, Danni</au><au>Yu, Yang</au><au>Fan, Jingfan</au><au>Yu, Wenyuan</au><au>Xiao, Deqiang</au><au>Lin, Yucong</au><au>Yang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2024-09</date><risdate>2024</risdate><volume>51</volume><issue>9</issue><spage>6103</spage><epage>6119</epage><pages>6103-6119</pages><issn>0094-2405</issn><issn>2473-4209</issn><eissn>2473-4209</eissn><abstract>Background Inferring the shape and position of coronary artery poses challenges when using fluoroscopic image guidance during percutaneous coronary intervention (PCI) procedure. Although angiography enables coronary artery visualization, the use of injected contrast agent raises concerns about radiation exposure and the risk of contrast‐induced nephropathy. To address these issues, dynamic coronary roadmapping overlaid on fluoroscopic images can provide coronary visual feedback without contrast injection. Purpose This paper proposes a novel cardio‐respiratory motion compensation method that utilizes cardiac state synchronization and catheter motion estimation to achieve coronary roadmapping in fluoroscopic images. Methods For more accurate cardiac state synchronization, video frame interpolation is applied to increase the frame rate of the original limited angiographic images, resulting in higher framerate and more adequate roadmaps. The proposed method also incorporates a multi‐length cross‐correlation based adaptive electrocardiogram (ECG) matching to address irregular cardiac motion situation. Furthermore, a shape‐constrained path searching method is proposed to extract catheter structure from both fluoroscopic and angiographic image. Then catheter motion is estimated using a cascaded matching approach with an outlier removal strategy, leading to a final corrected roadmap. Results Evaluation of the proposed method on clinical x‐ray images demonstrates its effectiveness, achieving a 92.8% F1 score for catheter extraction on 589 fluoroscopic and angiographic images. Additionally, the method achieves a 5.6‐pixel distance error of the coronary roadmap on 164 intraoperative fluoroscopic images. Conclusions Overall, the proposed method achieves accurate coronary roadmapping in fluoroscopic images and shows potential to overlay accurate coronary roadmap on fluoroscopic image in assisting PCI.</abstract><cop>United States</cop><pmid>38865713</pmid><doi>10.1002/mp.17241</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2024-09, Vol.51 (9), p.6103-6119
issn 0094-2405
2473-4209
2473-4209
language eng
recordid cdi_proquest_miscellaneous_3067914133
source Wiley
subjects cardiac state synchronization
cardio‐respiratory motion compensation
catheter motion estimation
Coronary Angiography
Coronary Vessels - diagnostic imaging
dynamic coronary roadmapping
Electrocardiography
Fluoroscopy
Heart - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Movement
Respiration
title Cardio‐respiratory motion compensation for coronary roadmapping in fluoroscopic imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardio%E2%80%90respiratory%20motion%20compensation%20for%20coronary%20roadmapping%20in%20fluoroscopic%20imaging&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Chen,%20Ying&rft.date=2024-09&rft.volume=51&rft.issue=9&rft.spage=6103&rft.epage=6119&rft.pages=6103-6119&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.17241&rft_dat=%3Cproquest_cross%3E3067914133%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2121-2ed226bcd28fa7d4ae4be33300ff1c2aea7acc35e6d5d3d596fded5469d4b5e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067914133&rft_id=info:pmid/38865713&rfr_iscdi=true