Loading…
Controllable Andreev Bound States in Bilayer Graphene Josephson Junctions from Short to Long Junction Limits
We demonstrate that the mode number of Andreev bound states in bilayer graphene Josephson junctions can be modulated by controlling the superconducting coherence length in situ. By exploiting the quadratic band dispersion of bilayer graphene, we control the Fermi velocity and thus the coherence leng...
Saved in:
Published in: | Physical review letters 2024-05, Vol.132 (22), p.226301, Article 226301 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate that the mode number of Andreev bound states in bilayer graphene Josephson junctions can be modulated by controlling the superconducting coherence length in situ. By exploiting the quadratic band dispersion of bilayer graphene, we control the Fermi velocity and thus the coherence length via the application of electrostatic gating. Tunneling spectroscopy of the Andreev bound states reveals a crossover from short to long Josephson junction regimes as we approach the charge neutral point of the bilayer graphene. Furthermore, analysis of different mode numbers of the Andreev energy spectrum allows us to estimate the phase-dependent Josephson current quantitatively. Our Letter provides a new way for studying multimode Andreev levels by tuning the Fermi velocity. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.132.226301 |