Loading…

Hematoxylin and Eosin Architecture Uncovers Clinically Divergent Niches in Pancreatic Cancer

Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex r...

Full description

Saved in:
Bibliographic Details
Published in:Tissue engineering. Part A 2024-10, Vol.30 (ja), p.605-613
Main Authors: Guo, Jason L, Lopez, David M, Mascharak, Shamik, Foster, Deshka S, Khan, Anum, Davitt, Michael F, Nguyen, Alan T, Burcham, Austin R, Chinta, Malini S, Guardino, Nicholas J, Griffin, Michelle, Miller, Elisabeth, Januszyk, Michael, Raghavan, Shyam S, Longacre, Teri A, Delitto, Daniel J, Norton, Jeffrey A, Longaker, Michael T.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c231t-5be22e3c2550725483e9a053071b567cab1ea834eedbcd83dbe0612460e0ce953
container_end_page 613
container_issue ja
container_start_page 605
container_title Tissue engineering. Part A
container_volume 30
creator Guo, Jason L
Lopez, David M
Mascharak, Shamik
Foster, Deshka S
Khan, Anum
Davitt, Michael F
Nguyen, Alan T
Burcham, Austin R
Chinta, Malini S
Guardino, Nicholas J
Griffin, Michelle
Miller, Elisabeth
Januszyk, Michael
Raghavan, Shyam S
Longacre, Teri A
Delitto, Daniel J
Norton, Jeffrey A
Longaker, Michael T.
description Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex roles in both tumor biology and clinical outcomes that are not yet fully understood. Using hematoxylin and eosin (H&E), a routine histological stain utilized in existing clinical workflows, we quantified ECM architecture in 85 patient samples to assess relationships between desmoplastic architecture and clinical outcomes such as survival time and disease recurrence. By utilizing unsupervised machine learning (ML) to summarize a latent space across 147 local (e.g. fiber length, solidity) and global (e.g. fiber branching, porosity) H&E-based features, we identified a continuum of histological architectures that were associated with differences in both survival and recurrence. Further, we mapped H&E architectures to a CO-Detection by indEXing (CODEX) reference atlas, revealing localized cell- and protein-based niches associated with outcome-positive vs. outcome-negative scarring in the tumor microenvironment. Overall, our study utilizes standard H&E staining to uncover clinically relevant associations between desmoplastic organization and PDAC outcomes, offering a translatable pipeline to support prognostic decision-making and a blueprint of spatial-biological factors for modeling by tissue engineering methods.
doi_str_mv 10.1089/ten.TEA.2024.0039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3068754590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068754590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-5be22e3c2550725483e9a053071b567cab1ea834eedbcd83dbe0612460e0ce953</originalsourceid><addsrcrecordid>eNptkT9PwzAQxS0EouXPB2BBGVlaznEcJ2MVCkWqgKGVGJAix7lSo8Qptovot8dVS8XAcLqn03tv-B0hVxSGFLL81qMZzsajYQxxMgRg-RHp05yJAWP89figE9ojZ859AKSQCnFKeizLRJKLvE_eJthK331vGm0iaepo3LmgRlYttUfl1xajuVHdF1oXFcGklWyaTXSnw-UdjY-etFqii0LoRRplUXqtoiJItBfkZCEbh5f7fU7m9-NZMRlMnx8ei9F0oGJG_YBXGMfIVMw5iJgnGcNcAmcgaMVToWRFUWYsQawrVWesrhBSGicpICjMOTsnN7vele0-1-h82WqnsGmkwW7tSgZpJnjCcwhWurMq2zlncVGurG6l3ZQUyi3UMkANI8st1HILNWSu9_XrqsX6kPilGAxiZ9iepTGNxgqt_7c6_OtP9Q-SEocT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068754590</pqid></control><display><type>article</type><title>Hematoxylin and Eosin Architecture Uncovers Clinically Divergent Niches in Pancreatic Cancer</title><source>Mary Ann Liebert Online Subscription</source><creator>Guo, Jason L ; Lopez, David M ; Mascharak, Shamik ; Foster, Deshka S ; Khan, Anum ; Davitt, Michael F ; Nguyen, Alan T ; Burcham, Austin R ; Chinta, Malini S ; Guardino, Nicholas J ; Griffin, Michelle ; Miller, Elisabeth ; Januszyk, Michael ; Raghavan, Shyam S ; Longacre, Teri A ; Delitto, Daniel J ; Norton, Jeffrey A ; Longaker, Michael T.</creator><creatorcontrib>Guo, Jason L ; Lopez, David M ; Mascharak, Shamik ; Foster, Deshka S ; Khan, Anum ; Davitt, Michael F ; Nguyen, Alan T ; Burcham, Austin R ; Chinta, Malini S ; Guardino, Nicholas J ; Griffin, Michelle ; Miller, Elisabeth ; Januszyk, Michael ; Raghavan, Shyam S ; Longacre, Teri A ; Delitto, Daniel J ; Norton, Jeffrey A ; Longaker, Michael T.</creatorcontrib><description>Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex roles in both tumor biology and clinical outcomes that are not yet fully understood. Using hematoxylin and eosin (H&amp;E), a routine histological stain utilized in existing clinical workflows, we quantified ECM architecture in 85 patient samples to assess relationships between desmoplastic architecture and clinical outcomes such as survival time and disease recurrence. By utilizing unsupervised machine learning (ML) to summarize a latent space across 147 local (e.g. fiber length, solidity) and global (e.g. fiber branching, porosity) H&amp;E-based features, we identified a continuum of histological architectures that were associated with differences in both survival and recurrence. Further, we mapped H&amp;E architectures to a CO-Detection by indEXing (CODEX) reference atlas, revealing localized cell- and protein-based niches associated with outcome-positive vs. outcome-negative scarring in the tumor microenvironment. Overall, our study utilizes standard H&amp;E staining to uncover clinically relevant associations between desmoplastic organization and PDAC outcomes, offering a translatable pipeline to support prognostic decision-making and a blueprint of spatial-biological factors for modeling by tissue engineering methods.</description><identifier>ISSN: 1937-3341</identifier><identifier>ISSN: 1937-335X</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.TEA.2024.0039</identifier><identifier>PMID: 38874979</identifier><language>eng</language><publisher>United States</publisher><ispartof>Tissue engineering. Part A, 2024-10, Vol.30 (ja), p.605-613</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c231t-5be22e3c2550725483e9a053071b567cab1ea834eedbcd83dbe0612460e0ce953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.TEA.2024.0039$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.TEA.2024.0039$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>314,780,784,3042,21723,27924,27925,55291,55303</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38874979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jason L</creatorcontrib><creatorcontrib>Lopez, David M</creatorcontrib><creatorcontrib>Mascharak, Shamik</creatorcontrib><creatorcontrib>Foster, Deshka S</creatorcontrib><creatorcontrib>Khan, Anum</creatorcontrib><creatorcontrib>Davitt, Michael F</creatorcontrib><creatorcontrib>Nguyen, Alan T</creatorcontrib><creatorcontrib>Burcham, Austin R</creatorcontrib><creatorcontrib>Chinta, Malini S</creatorcontrib><creatorcontrib>Guardino, Nicholas J</creatorcontrib><creatorcontrib>Griffin, Michelle</creatorcontrib><creatorcontrib>Miller, Elisabeth</creatorcontrib><creatorcontrib>Januszyk, Michael</creatorcontrib><creatorcontrib>Raghavan, Shyam S</creatorcontrib><creatorcontrib>Longacre, Teri A</creatorcontrib><creatorcontrib>Delitto, Daniel J</creatorcontrib><creatorcontrib>Norton, Jeffrey A</creatorcontrib><creatorcontrib>Longaker, Michael T.</creatorcontrib><title>Hematoxylin and Eosin Architecture Uncovers Clinically Divergent Niches in Pancreatic Cancer</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex roles in both tumor biology and clinical outcomes that are not yet fully understood. Using hematoxylin and eosin (H&amp;E), a routine histological stain utilized in existing clinical workflows, we quantified ECM architecture in 85 patient samples to assess relationships between desmoplastic architecture and clinical outcomes such as survival time and disease recurrence. By utilizing unsupervised machine learning (ML) to summarize a latent space across 147 local (e.g. fiber length, solidity) and global (e.g. fiber branching, porosity) H&amp;E-based features, we identified a continuum of histological architectures that were associated with differences in both survival and recurrence. Further, we mapped H&amp;E architectures to a CO-Detection by indEXing (CODEX) reference atlas, revealing localized cell- and protein-based niches associated with outcome-positive vs. outcome-negative scarring in the tumor microenvironment. Overall, our study utilizes standard H&amp;E staining to uncover clinically relevant associations between desmoplastic organization and PDAC outcomes, offering a translatable pipeline to support prognostic decision-making and a blueprint of spatial-biological factors for modeling by tissue engineering methods.</description><issn>1937-3341</issn><issn>1937-335X</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkT9PwzAQxS0EouXPB2BBGVlaznEcJ2MVCkWqgKGVGJAix7lSo8Qptovot8dVS8XAcLqn03tv-B0hVxSGFLL81qMZzsajYQxxMgRg-RHp05yJAWP89figE9ojZ859AKSQCnFKeizLRJKLvE_eJthK331vGm0iaepo3LmgRlYttUfl1xajuVHdF1oXFcGklWyaTXSnw-UdjY-etFqii0LoRRplUXqtoiJItBfkZCEbh5f7fU7m9-NZMRlMnx8ei9F0oGJG_YBXGMfIVMw5iJgnGcNcAmcgaMVToWRFUWYsQawrVWesrhBSGicpICjMOTsnN7vele0-1-h82WqnsGmkwW7tSgZpJnjCcwhWurMq2zlncVGurG6l3ZQUyi3UMkANI8st1HILNWSu9_XrqsX6kPilGAxiZ9iepTGNxgqt_7c6_OtP9Q-SEocT</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Guo, Jason L</creator><creator>Lopez, David M</creator><creator>Mascharak, Shamik</creator><creator>Foster, Deshka S</creator><creator>Khan, Anum</creator><creator>Davitt, Michael F</creator><creator>Nguyen, Alan T</creator><creator>Burcham, Austin R</creator><creator>Chinta, Malini S</creator><creator>Guardino, Nicholas J</creator><creator>Griffin, Michelle</creator><creator>Miller, Elisabeth</creator><creator>Januszyk, Michael</creator><creator>Raghavan, Shyam S</creator><creator>Longacre, Teri A</creator><creator>Delitto, Daniel J</creator><creator>Norton, Jeffrey A</creator><creator>Longaker, Michael T.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241001</creationdate><title>Hematoxylin and Eosin Architecture Uncovers Clinically Divergent Niches in Pancreatic Cancer</title><author>Guo, Jason L ; Lopez, David M ; Mascharak, Shamik ; Foster, Deshka S ; Khan, Anum ; Davitt, Michael F ; Nguyen, Alan T ; Burcham, Austin R ; Chinta, Malini S ; Guardino, Nicholas J ; Griffin, Michelle ; Miller, Elisabeth ; Januszyk, Michael ; Raghavan, Shyam S ; Longacre, Teri A ; Delitto, Daniel J ; Norton, Jeffrey A ; Longaker, Michael T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-5be22e3c2550725483e9a053071b567cab1ea834eedbcd83dbe0612460e0ce953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jason L</creatorcontrib><creatorcontrib>Lopez, David M</creatorcontrib><creatorcontrib>Mascharak, Shamik</creatorcontrib><creatorcontrib>Foster, Deshka S</creatorcontrib><creatorcontrib>Khan, Anum</creatorcontrib><creatorcontrib>Davitt, Michael F</creatorcontrib><creatorcontrib>Nguyen, Alan T</creatorcontrib><creatorcontrib>Burcham, Austin R</creatorcontrib><creatorcontrib>Chinta, Malini S</creatorcontrib><creatorcontrib>Guardino, Nicholas J</creatorcontrib><creatorcontrib>Griffin, Michelle</creatorcontrib><creatorcontrib>Miller, Elisabeth</creatorcontrib><creatorcontrib>Januszyk, Michael</creatorcontrib><creatorcontrib>Raghavan, Shyam S</creatorcontrib><creatorcontrib>Longacre, Teri A</creatorcontrib><creatorcontrib>Delitto, Daniel J</creatorcontrib><creatorcontrib>Norton, Jeffrey A</creatorcontrib><creatorcontrib>Longaker, Michael T.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jason L</au><au>Lopez, David M</au><au>Mascharak, Shamik</au><au>Foster, Deshka S</au><au>Khan, Anum</au><au>Davitt, Michael F</au><au>Nguyen, Alan T</au><au>Burcham, Austin R</au><au>Chinta, Malini S</au><au>Guardino, Nicholas J</au><au>Griffin, Michelle</au><au>Miller, Elisabeth</au><au>Januszyk, Michael</au><au>Raghavan, Shyam S</au><au>Longacre, Teri A</au><au>Delitto, Daniel J</au><au>Norton, Jeffrey A</au><au>Longaker, Michael T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hematoxylin and Eosin Architecture Uncovers Clinically Divergent Niches in Pancreatic Cancer</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>30</volume><issue>ja</issue><spage>605</spage><epage>613</epage><pages>605-613</pages><issn>1937-3341</issn><issn>1937-335X</issn><eissn>1937-335X</eissn><abstract>Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex roles in both tumor biology and clinical outcomes that are not yet fully understood. Using hematoxylin and eosin (H&amp;E), a routine histological stain utilized in existing clinical workflows, we quantified ECM architecture in 85 patient samples to assess relationships between desmoplastic architecture and clinical outcomes such as survival time and disease recurrence. By utilizing unsupervised machine learning (ML) to summarize a latent space across 147 local (e.g. fiber length, solidity) and global (e.g. fiber branching, porosity) H&amp;E-based features, we identified a continuum of histological architectures that were associated with differences in both survival and recurrence. Further, we mapped H&amp;E architectures to a CO-Detection by indEXing (CODEX) reference atlas, revealing localized cell- and protein-based niches associated with outcome-positive vs. outcome-negative scarring in the tumor microenvironment. Overall, our study utilizes standard H&amp;E staining to uncover clinically relevant associations between desmoplastic organization and PDAC outcomes, offering a translatable pipeline to support prognostic decision-making and a blueprint of spatial-biological factors for modeling by tissue engineering methods.</abstract><cop>United States</cop><pmid>38874979</pmid><doi>10.1089/ten.TEA.2024.0039</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1937-3341
ispartof Tissue engineering. Part A, 2024-10, Vol.30 (ja), p.605-613
issn 1937-3341
1937-335X
1937-335X
language eng
recordid cdi_proquest_miscellaneous_3068754590
source Mary Ann Liebert Online Subscription
title Hematoxylin and Eosin Architecture Uncovers Clinically Divergent Niches in Pancreatic Cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hematoxylin%20and%20Eosin%20Architecture%20Uncovers%20Clinically%20Divergent%20Niches%20in%20Pancreatic%20Cancer&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Guo,%20Jason%20L&rft.date=2024-10-01&rft.volume=30&rft.issue=ja&rft.spage=605&rft.epage=613&rft.pages=605-613&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.TEA.2024.0039&rft_dat=%3Cproquest_cross%3E3068754590%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c231t-5be22e3c2550725483e9a053071b567cab1ea834eedbcd83dbe0612460e0ce953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068754590&rft_id=info:pmid/38874979&rfr_iscdi=true