Loading…
Dual-wavelength distributed feedback laser array based on four-phase-shifted sampled Bragg grating for terahertz generation
We propose and experimentally demonstrate a dual-wavelength distributed feedback (DFB) laser array utilizing a four-phase-shifted sampled Bragg grating. By using this grating, the coupling coefficient is enhanced by approximately 2.83 times compared to conventional sampled Bragg gratings. The device...
Saved in:
Published in: | Optics letters 2024-06, Vol.49 (12), p.3472 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose and experimentally demonstrate a dual-wavelength distributed feedback (DFB) laser array utilizing a four-phase-shifted sampled Bragg grating. By using this grating, the coupling coefficient is enhanced by approximately 2.83 times compared to conventional sampled Bragg gratings. The devices exhibit a stable dual-mode lasing achieved by introducing further π-phase shifts at 1/3 and 2/3 positions along the cavity. These devices require only one stage of lithography to define both the ridge waveguide and the gratings, mitigating issues related to misalignment between them. A dual-wavelength laser array has been fabricated with frequency spacings of 320 GHz, 500 GHz, 640 GHz, 800 GHz, and 1 THz. When integrated with semiconductor optical amplifiers, the output power of the device can reach 23.6 mW. Furthermore, the dual-wavelength lasing is maintained across a wide range of injection currents, with a power difference of |
---|---|
ISSN: | 0146-9592 1539-4794 1539-4794 |
DOI: | 10.1364/OL.524107 |