Loading…

Highly Efficient Removal of 2,4,5-Trichlorophenoxyacetic Acid by Adsorption and Photocatalysis Using Nanomaterials with Surface Coating by the Cationic Surfactant

Extensive removal of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) using titania (TiO2) nanoparticles by adsorption and photocatalysis with a surface coating by cetyltrimethylammonium bromide (CTAB) is reported. The CTAB-coated TiO2 nanoparticles (CCTN) were characterized by FT-IR, zeta-potential meas...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2024-07, Vol.40 (26), p.13573-13582
Main Authors: Le, Thi-Dung, Nguyen, Thi-Hue, Nguyen, Duc-Thang, Vu, Duy-Tung, Hoang, Hiep, Le, Thanh- Son, Pham, Tien-Duc
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extensive removal of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) using titania (TiO2) nanoparticles by adsorption and photocatalysis with a surface coating by cetyltrimethylammonium bromide (CTAB) is reported. The CTAB-coated TiO2 nanoparticles (CCTN) were characterized by FT-IR, zeta-potential measurements, and UV–vis diffuse reflectance spectroscopy (UV–vis-DRS). 2,4,5-T removal increased significantly after surface modification with CTAB compared with bare TiO2 nanoparticles. Optimal parameters affecting 2,4,5-T removal were found to be pH 4, CCTN dosage 10 mg/mL, and adsorption time 180 min. The maximum adsorptive removal of 2,4,5-T using CCTN reached 96.2% while highest adsorption capacity was 13.4 mg/g. CCTN was also found to be an excellent photocatalyst that achieved degradation efficiency of 99.2% with an initial concentration of 25 mg/L. The removal mechanisms of 2,4,5-T using CCTN by both adsorption and photocatalysis are discussed in detail based on changes in functional group vibrations and surface charge. Our results indicate that CCTN is an excellent material for 2,4,5-T removal in water by both adsorption and photocatalysis.
ISSN:0743-7463
1520-5827
1520-5827
DOI:10.1021/acs.langmuir.4c01087