Loading…

Revisiting the thermal decomposition mechanism of MAPbI3

The thermal stability of MAPbI3 poses a challenge for the industry. To overcome this limitation, a thorough investigation of MAPbI3 is necessary. In this work, thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were conducted to identify the thermal decomposition p...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2024-07, Vol.26 (26), p.17999-18005
Main Authors: Yang, Weijie, Shi, Ruiyang, Lu, Huan, Liu, Kailong, Qingqi Yan, Bai, Yang, Ding, Xunlei, Li, Hao, Gao, Zhengyang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 18005
container_issue 26
container_start_page 17999
container_title Physical chemistry chemical physics : PCCP
container_volume 26
creator Yang, Weijie
Shi, Ruiyang
Lu, Huan
Liu, Kailong
Qingqi Yan
Bai, Yang
Ding, Xunlei
Li, Hao
Gao, Zhengyang
description The thermal stability of MAPbI3 poses a challenge for the industry. To overcome this limitation, a thorough investigation of MAPbI3 is necessary. In this work, thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were conducted to identify the thermal decomposition products of MAPbI3, which were found to be CH3I, NH3, and PbI2. In situ X-ray diffraction (XRD) measurements were then performed in the temperature range from 300 to 700 K, which revealed the significant decomposition of the (110), (220), and (310) surfaces of MAPbI3 between 550 and 600 K. Density functional theory (DFT) calculations demonstrated that the (220) surface exhibited the highest stability. Additionally, the transition states of thermal decomposition showed that the energy barrier for the decomposition of the (110) surface was 2.07 eV. Our combined experimental and theoretical results provide a better understanding of the thermal decomposition mechanism of MAPbI3, providing valuable theoretical support for the design of long-term stable devices.
doi_str_mv 10.1039/d4cp01318b
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070803243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070803243</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-32a7066ba5c2e3df10dc3d8d1060b3a02569b7eebeb82c0d358fe6178b7936fd3</originalsourceid><addsrcrecordid>eNpdjktLw0AUhQdRsFY3_oKAGzfRO3MzjyxL8VGoKKLrMo8bm5JkYib199uguHBxOAfOx-EwdsnhhgOWt6HwPXDkxh2xGS8U5iWY4vgva3XKzlLaAQCXHGfMvNJXneqx7j6ycUuThtY2WSAf2z5OTeyylvzWdnVqs1hlT4sXt8JzdlLZJtHFr8_Z-_3d2_IxXz8_rJaLdd4LrsYchdWglLPSC8JQcQgegwkcFDi0IKQqnSZy5IzwEFCaihTXxukSVRVwzq5_dvshfu4pjZu2Tp6axnYU92mDoMEAigIP6NU_dBf3Q3d4N1FSCuRY4DfkslVZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075523134</pqid></control><display><type>article</type><title>Revisiting the thermal decomposition mechanism of MAPbI3</title><source>Royal Society of Chemistry</source><creator>Yang, Weijie ; Shi, Ruiyang ; Lu, Huan ; Liu, Kailong ; Qingqi Yan ; Bai, Yang ; Ding, Xunlei ; Li, Hao ; Gao, Zhengyang</creator><creatorcontrib>Yang, Weijie ; Shi, Ruiyang ; Lu, Huan ; Liu, Kailong ; Qingqi Yan ; Bai, Yang ; Ding, Xunlei ; Li, Hao ; Gao, Zhengyang</creatorcontrib><description>The thermal stability of MAPbI3 poses a challenge for the industry. To overcome this limitation, a thorough investigation of MAPbI3 is necessary. In this work, thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were conducted to identify the thermal decomposition products of MAPbI3, which were found to be CH3I, NH3, and PbI2. In situ X-ray diffraction (XRD) measurements were then performed in the temperature range from 300 to 700 K, which revealed the significant decomposition of the (110), (220), and (310) surfaces of MAPbI3 between 550 and 600 K. Density functional theory (DFT) calculations demonstrated that the (220) surface exhibited the highest stability. Additionally, the transition states of thermal decomposition showed that the energy barrier for the decomposition of the (110) surface was 2.07 eV. Our combined experimental and theoretical results provide a better understanding of the thermal decomposition mechanism of MAPbI3, providing valuable theoretical support for the design of long-term stable devices.</description><identifier>ISSN: 1463-9076</identifier><identifier>ISSN: 1463-9084</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp01318b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Decomposition ; Density functional theory ; Fourier transforms ; Infrared analysis ; Surface stability ; Thermal analysis ; Thermal decomposition ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-07, Vol.26 (26), p.17999-18005</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Weijie</creatorcontrib><creatorcontrib>Shi, Ruiyang</creatorcontrib><creatorcontrib>Lu, Huan</creatorcontrib><creatorcontrib>Liu, Kailong</creatorcontrib><creatorcontrib>Qingqi Yan</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Ding, Xunlei</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Gao, Zhengyang</creatorcontrib><title>Revisiting the thermal decomposition mechanism of MAPbI3</title><title>Physical chemistry chemical physics : PCCP</title><description>The thermal stability of MAPbI3 poses a challenge for the industry. To overcome this limitation, a thorough investigation of MAPbI3 is necessary. In this work, thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were conducted to identify the thermal decomposition products of MAPbI3, which were found to be CH3I, NH3, and PbI2. In situ X-ray diffraction (XRD) measurements were then performed in the temperature range from 300 to 700 K, which revealed the significant decomposition of the (110), (220), and (310) surfaces of MAPbI3 between 550 and 600 K. Density functional theory (DFT) calculations demonstrated that the (220) surface exhibited the highest stability. Additionally, the transition states of thermal decomposition showed that the energy barrier for the decomposition of the (110) surface was 2.07 eV. Our combined experimental and theoretical results provide a better understanding of the thermal decomposition mechanism of MAPbI3, providing valuable theoretical support for the design of long-term stable devices.</description><subject>Ammonia</subject><subject>Decomposition</subject><subject>Density functional theory</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Surface stability</subject><subject>Thermal analysis</subject><subject>Thermal decomposition</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>1463-9076</issn><issn>1463-9084</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdjktLw0AUhQdRsFY3_oKAGzfRO3MzjyxL8VGoKKLrMo8bm5JkYib199uguHBxOAfOx-EwdsnhhgOWt6HwPXDkxh2xGS8U5iWY4vgva3XKzlLaAQCXHGfMvNJXneqx7j6ycUuThtY2WSAf2z5OTeyylvzWdnVqs1hlT4sXt8JzdlLZJtHFr8_Z-_3d2_IxXz8_rJaLdd4LrsYchdWglLPSC8JQcQgegwkcFDi0IKQqnSZy5IzwEFCaihTXxukSVRVwzq5_dvshfu4pjZu2Tp6axnYU92mDoMEAigIP6NU_dBf3Q3d4N1FSCuRY4DfkslVZ</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Yang, Weijie</creator><creator>Shi, Ruiyang</creator><creator>Lu, Huan</creator><creator>Liu, Kailong</creator><creator>Qingqi Yan</creator><creator>Bai, Yang</creator><creator>Ding, Xunlei</creator><creator>Li, Hao</creator><creator>Gao, Zhengyang</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240703</creationdate><title>Revisiting the thermal decomposition mechanism of MAPbI3</title><author>Yang, Weijie ; Shi, Ruiyang ; Lu, Huan ; Liu, Kailong ; Qingqi Yan ; Bai, Yang ; Ding, Xunlei ; Li, Hao ; Gao, Zhengyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-32a7066ba5c2e3df10dc3d8d1060b3a02569b7eebeb82c0d358fe6178b7936fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Decomposition</topic><topic>Density functional theory</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Surface stability</topic><topic>Thermal analysis</topic><topic>Thermal decomposition</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Weijie</creatorcontrib><creatorcontrib>Shi, Ruiyang</creatorcontrib><creatorcontrib>Lu, Huan</creatorcontrib><creatorcontrib>Liu, Kailong</creatorcontrib><creatorcontrib>Qingqi Yan</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Ding, Xunlei</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Gao, Zhengyang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Weijie</au><au>Shi, Ruiyang</au><au>Lu, Huan</au><au>Liu, Kailong</au><au>Qingqi Yan</au><au>Bai, Yang</au><au>Ding, Xunlei</au><au>Li, Hao</au><au>Gao, Zhengyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the thermal decomposition mechanism of MAPbI3</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2024-07-03</date><risdate>2024</risdate><volume>26</volume><issue>26</issue><spage>17999</spage><epage>18005</epage><pages>17999-18005</pages><issn>1463-9076</issn><issn>1463-9084</issn><eissn>1463-9084</eissn><abstract>The thermal stability of MAPbI3 poses a challenge for the industry. To overcome this limitation, a thorough investigation of MAPbI3 is necessary. In this work, thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were conducted to identify the thermal decomposition products of MAPbI3, which were found to be CH3I, NH3, and PbI2. In situ X-ray diffraction (XRD) measurements were then performed in the temperature range from 300 to 700 K, which revealed the significant decomposition of the (110), (220), and (310) surfaces of MAPbI3 between 550 and 600 K. Density functional theory (DFT) calculations demonstrated that the (220) surface exhibited the highest stability. Additionally, the transition states of thermal decomposition showed that the energy barrier for the decomposition of the (110) surface was 2.07 eV. Our combined experimental and theoretical results provide a better understanding of the thermal decomposition mechanism of MAPbI3, providing valuable theoretical support for the design of long-term stable devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4cp01318b</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-07, Vol.26 (26), p.17999-18005
issn 1463-9076
1463-9084
1463-9084
language eng
recordid cdi_proquest_miscellaneous_3070803243
source Royal Society of Chemistry
subjects Ammonia
Decomposition
Density functional theory
Fourier transforms
Infrared analysis
Surface stability
Thermal analysis
Thermal decomposition
Thermal stability
Thermogravimetric analysis
title Revisiting the thermal decomposition mechanism of MAPbI3
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20thermal%20decomposition%20mechanism%20of%20MAPbI3&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yang,%20Weijie&rft.date=2024-07-03&rft.volume=26&rft.issue=26&rft.spage=17999&rft.epage=18005&rft.pages=17999-18005&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp01318b&rft_dat=%3Cproquest%3E3070803243%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p216t-32a7066ba5c2e3df10dc3d8d1060b3a02569b7eebeb82c0d358fe6178b7936fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075523134&rft_id=info:pmid/&rfr_iscdi=true