Loading…
Revisiting the thermal decomposition mechanism of MAPbI3
The thermal stability of MAPbI3 poses a challenge for the industry. To overcome this limitation, a thorough investigation of MAPbI3 is necessary. In this work, thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were conducted to identify the thermal decomposition p...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2024-07, Vol.26 (26), p.17999-18005 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 18005 |
container_issue | 26 |
container_start_page | 17999 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 26 |
creator | Yang, Weijie Shi, Ruiyang Lu, Huan Liu, Kailong Qingqi Yan Bai, Yang Ding, Xunlei Li, Hao Gao, Zhengyang |
description | The thermal stability of MAPbI3 poses a challenge for the industry. To overcome this limitation, a thorough investigation of MAPbI3 is necessary. In this work, thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were conducted to identify the thermal decomposition products of MAPbI3, which were found to be CH3I, NH3, and PbI2. In situ X-ray diffraction (XRD) measurements were then performed in the temperature range from 300 to 700 K, which revealed the significant decomposition of the (110), (220), and (310) surfaces of MAPbI3 between 550 and 600 K. Density functional theory (DFT) calculations demonstrated that the (220) surface exhibited the highest stability. Additionally, the transition states of thermal decomposition showed that the energy barrier for the decomposition of the (110) surface was 2.07 eV. Our combined experimental and theoretical results provide a better understanding of the thermal decomposition mechanism of MAPbI3, providing valuable theoretical support for the design of long-term stable devices. |
doi_str_mv | 10.1039/d4cp01318b |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070803243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070803243</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-32a7066ba5c2e3df10dc3d8d1060b3a02569b7eebeb82c0d358fe6178b7936fd3</originalsourceid><addsrcrecordid>eNpdjktLw0AUhQdRsFY3_oKAGzfRO3MzjyxL8VGoKKLrMo8bm5JkYib199uguHBxOAfOx-EwdsnhhgOWt6HwPXDkxh2xGS8U5iWY4vgva3XKzlLaAQCXHGfMvNJXneqx7j6ycUuThtY2WSAf2z5OTeyylvzWdnVqs1hlT4sXt8JzdlLZJtHFr8_Z-_3d2_IxXz8_rJaLdd4LrsYchdWglLPSC8JQcQgegwkcFDi0IKQqnSZy5IzwEFCaihTXxukSVRVwzq5_dvshfu4pjZu2Tp6axnYU92mDoMEAigIP6NU_dBf3Q3d4N1FSCuRY4DfkslVZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075523134</pqid></control><display><type>article</type><title>Revisiting the thermal decomposition mechanism of MAPbI3</title><source>Royal Society of Chemistry</source><creator>Yang, Weijie ; Shi, Ruiyang ; Lu, Huan ; Liu, Kailong ; Qingqi Yan ; Bai, Yang ; Ding, Xunlei ; Li, Hao ; Gao, Zhengyang</creator><creatorcontrib>Yang, Weijie ; Shi, Ruiyang ; Lu, Huan ; Liu, Kailong ; Qingqi Yan ; Bai, Yang ; Ding, Xunlei ; Li, Hao ; Gao, Zhengyang</creatorcontrib><description>The thermal stability of MAPbI3 poses a challenge for the industry. To overcome this limitation, a thorough investigation of MAPbI3 is necessary. In this work, thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were conducted to identify the thermal decomposition products of MAPbI3, which were found to be CH3I, NH3, and PbI2. In situ X-ray diffraction (XRD) measurements were then performed in the temperature range from 300 to 700 K, which revealed the significant decomposition of the (110), (220), and (310) surfaces of MAPbI3 between 550 and 600 K. Density functional theory (DFT) calculations demonstrated that the (220) surface exhibited the highest stability. Additionally, the transition states of thermal decomposition showed that the energy barrier for the decomposition of the (110) surface was 2.07 eV. Our combined experimental and theoretical results provide a better understanding of the thermal decomposition mechanism of MAPbI3, providing valuable theoretical support for the design of long-term stable devices.</description><identifier>ISSN: 1463-9076</identifier><identifier>ISSN: 1463-9084</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp01318b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Decomposition ; Density functional theory ; Fourier transforms ; Infrared analysis ; Surface stability ; Thermal analysis ; Thermal decomposition ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-07, Vol.26 (26), p.17999-18005</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Weijie</creatorcontrib><creatorcontrib>Shi, Ruiyang</creatorcontrib><creatorcontrib>Lu, Huan</creatorcontrib><creatorcontrib>Liu, Kailong</creatorcontrib><creatorcontrib>Qingqi Yan</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Ding, Xunlei</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Gao, Zhengyang</creatorcontrib><title>Revisiting the thermal decomposition mechanism of MAPbI3</title><title>Physical chemistry chemical physics : PCCP</title><description>The thermal stability of MAPbI3 poses a challenge for the industry. To overcome this limitation, a thorough investigation of MAPbI3 is necessary. In this work, thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were conducted to identify the thermal decomposition products of MAPbI3, which were found to be CH3I, NH3, and PbI2. In situ X-ray diffraction (XRD) measurements were then performed in the temperature range from 300 to 700 K, which revealed the significant decomposition of the (110), (220), and (310) surfaces of MAPbI3 between 550 and 600 K. Density functional theory (DFT) calculations demonstrated that the (220) surface exhibited the highest stability. Additionally, the transition states of thermal decomposition showed that the energy barrier for the decomposition of the (110) surface was 2.07 eV. Our combined experimental and theoretical results provide a better understanding of the thermal decomposition mechanism of MAPbI3, providing valuable theoretical support for the design of long-term stable devices.</description><subject>Ammonia</subject><subject>Decomposition</subject><subject>Density functional theory</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Surface stability</subject><subject>Thermal analysis</subject><subject>Thermal decomposition</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>1463-9076</issn><issn>1463-9084</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdjktLw0AUhQdRsFY3_oKAGzfRO3MzjyxL8VGoKKLrMo8bm5JkYib199uguHBxOAfOx-EwdsnhhgOWt6HwPXDkxh2xGS8U5iWY4vgva3XKzlLaAQCXHGfMvNJXneqx7j6ycUuThtY2WSAf2z5OTeyylvzWdnVqs1hlT4sXt8JzdlLZJtHFr8_Z-_3d2_IxXz8_rJaLdd4LrsYchdWglLPSC8JQcQgegwkcFDi0IKQqnSZy5IzwEFCaihTXxukSVRVwzq5_dvshfu4pjZu2Tp6axnYU92mDoMEAigIP6NU_dBf3Q3d4N1FSCuRY4DfkslVZ</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Yang, Weijie</creator><creator>Shi, Ruiyang</creator><creator>Lu, Huan</creator><creator>Liu, Kailong</creator><creator>Qingqi Yan</creator><creator>Bai, Yang</creator><creator>Ding, Xunlei</creator><creator>Li, Hao</creator><creator>Gao, Zhengyang</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240703</creationdate><title>Revisiting the thermal decomposition mechanism of MAPbI3</title><author>Yang, Weijie ; Shi, Ruiyang ; Lu, Huan ; Liu, Kailong ; Qingqi Yan ; Bai, Yang ; Ding, Xunlei ; Li, Hao ; Gao, Zhengyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-32a7066ba5c2e3df10dc3d8d1060b3a02569b7eebeb82c0d358fe6178b7936fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Decomposition</topic><topic>Density functional theory</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Surface stability</topic><topic>Thermal analysis</topic><topic>Thermal decomposition</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Weijie</creatorcontrib><creatorcontrib>Shi, Ruiyang</creatorcontrib><creatorcontrib>Lu, Huan</creatorcontrib><creatorcontrib>Liu, Kailong</creatorcontrib><creatorcontrib>Qingqi Yan</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Ding, Xunlei</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Gao, Zhengyang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Weijie</au><au>Shi, Ruiyang</au><au>Lu, Huan</au><au>Liu, Kailong</au><au>Qingqi Yan</au><au>Bai, Yang</au><au>Ding, Xunlei</au><au>Li, Hao</au><au>Gao, Zhengyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the thermal decomposition mechanism of MAPbI3</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2024-07-03</date><risdate>2024</risdate><volume>26</volume><issue>26</issue><spage>17999</spage><epage>18005</epage><pages>17999-18005</pages><issn>1463-9076</issn><issn>1463-9084</issn><eissn>1463-9084</eissn><abstract>The thermal stability of MAPbI3 poses a challenge for the industry. To overcome this limitation, a thorough investigation of MAPbI3 is necessary. In this work, thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were conducted to identify the thermal decomposition products of MAPbI3, which were found to be CH3I, NH3, and PbI2. In situ X-ray diffraction (XRD) measurements were then performed in the temperature range from 300 to 700 K, which revealed the significant decomposition of the (110), (220), and (310) surfaces of MAPbI3 between 550 and 600 K. Density functional theory (DFT) calculations demonstrated that the (220) surface exhibited the highest stability. Additionally, the transition states of thermal decomposition showed that the energy barrier for the decomposition of the (110) surface was 2.07 eV. Our combined experimental and theoretical results provide a better understanding of the thermal decomposition mechanism of MAPbI3, providing valuable theoretical support for the design of long-term stable devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4cp01318b</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2024-07, Vol.26 (26), p.17999-18005 |
issn | 1463-9076 1463-9084 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_3070803243 |
source | Royal Society of Chemistry |
subjects | Ammonia Decomposition Density functional theory Fourier transforms Infrared analysis Surface stability Thermal analysis Thermal decomposition Thermal stability Thermogravimetric analysis |
title | Revisiting the thermal decomposition mechanism of MAPbI3 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20thermal%20decomposition%20mechanism%20of%20MAPbI3&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yang,%20Weijie&rft.date=2024-07-03&rft.volume=26&rft.issue=26&rft.spage=17999&rft.epage=18005&rft.pages=17999-18005&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp01318b&rft_dat=%3Cproquest%3E3070803243%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p216t-32a7066ba5c2e3df10dc3d8d1060b3a02569b7eebeb82c0d358fe6178b7936fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075523134&rft_id=info:pmid/&rfr_iscdi=true |