Loading…
Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury
Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function f...
Saved in:
Published in: | Glia 2024-09, Vol.72 (9), p.1674-1692 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2467-ed8799d8d9c6c963a5815bd2c6876918d4ca3874e456676edd686b66f6e017793 |
container_end_page | 1692 |
container_issue | 9 |
container_start_page | 1674 |
container_title | Glia |
container_volume | 72 |
creator | Liu, Hao Yi, Jiang Zhang, Chenxi Li, Yin Wang, Qian Wang, Shenyu Dai, Siming Zheng, Ziyang Jiang, Tao Gao, Peng Xue, Ao Huang, Zhenfei Kong, Fanqi Wang, Yongxiang He, Baorong Guo, Xiaodong Li, Qingqing Chen, Jian Yin, Guoyong Zhao, Shujie |
description | Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function for macrophage G protein‐coupled receptor kinase‐interactor 1 (GIT1) in promoting remyelination and functional repair after SCI. Using GIT1flox/flox Lyz2‐Cre (GIT1 CKO) mice, we identified that GIT1 deficiency in macrophages led to an increased generation of tumor necrosis factor‐alpha (TNFα), reduced proportion of mature oligodendrocytes (mOLs), impaired remyelination, and compromised functional recovery in vivo. These effects in GIT1 CKO mice were reversed with the administration of soluble TNF inhibitor. Moreover, bone marrow transplantation from GIT1 CWT mice reversed adverse outcomes in GIT1 CKO mice, further indicating the role of macrophage GIT1 in modulating spinal cord injury repair. Our in vitro experiments showed that macrophage GIT1 plays a critical role in secreting TNFα and influences the differentiation of oligodendrocyte precursor cells (OPCs) after stimulation with myelin debris. Collectively, our data uncovered a new role of macrophage GIT1 in regulating the transformation of OPCs into mOLs, essential for functional remyelination after SCI, suggesting that macrophage GIT1 could be a promising treatment target of SCI.
Main Points
Macrophage GIT1 inhibits TNFα secretion and facilitates the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (mOLs), thereby contributing to remyelination and improving functional recovery in mice after spinal cord injury.
‘The role of macrophage GIT1 in spinal cord injury repair’. |
doi_str_mv | 10.1002/glia.24577 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070826223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070826223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2467-ed8799d8d9c6c963a5815bd2c6876918d4ca3874e456676edd686b66f6e017793</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMoun5c_AES8CJCNWnafBxFdF1Y8aLnkk2ma5a2WZMW6b83664ePHgaZubhZeZ9ETqn5IYSkt8uG6dv8qIUYg9NKFEyo5TxfTQhUhUZLRQ9QscxrgihqRGH6IhJqZRgdILCszbBr9_1EvB09krxOvjW9xCxb9zSW-hs8GbsIS3ADCH6gA00DbauriFA1zvdO99h3VkcoB2hcd1uUvcQcFynvsHGB4tdtxrCeIoOat1EONvVE_T2-PB6_5TNX6az-7t5ZvKCiwysFEpZaZXhRnGmS0nLhc0Nl4IrKm1hNJOigKLkXHCwlku-4LzmQKgQip2gq61ueuljgNhXrYub23UHfogVI4LInOc5S-jlH3Tlh5Du3lCSEZasKxN1vaWSYzEGqKt1cK0OY0VJtUmi2iRRfSeR4Iud5LBowf6iP9YngG6BT9fA-I9UNZ3P7raiXz0hlF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083030015</pqid></control><display><type>article</type><title>Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury</title><source>Wiley</source><creator>Liu, Hao ; Yi, Jiang ; Zhang, Chenxi ; Li, Yin ; Wang, Qian ; Wang, Shenyu ; Dai, Siming ; Zheng, Ziyang ; Jiang, Tao ; Gao, Peng ; Xue, Ao ; Huang, Zhenfei ; Kong, Fanqi ; Wang, Yongxiang ; He, Baorong ; Guo, Xiaodong ; Li, Qingqing ; Chen, Jian ; Yin, Guoyong ; Zhao, Shujie</creator><creatorcontrib>Liu, Hao ; Yi, Jiang ; Zhang, Chenxi ; Li, Yin ; Wang, Qian ; Wang, Shenyu ; Dai, Siming ; Zheng, Ziyang ; Jiang, Tao ; Gao, Peng ; Xue, Ao ; Huang, Zhenfei ; Kong, Fanqi ; Wang, Yongxiang ; He, Baorong ; Guo, Xiaodong ; Li, Qingqing ; Chen, Jian ; Yin, Guoyong ; Zhao, Shujie</creatorcontrib><description>Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function for macrophage G protein‐coupled receptor kinase‐interactor 1 (GIT1) in promoting remyelination and functional repair after SCI. Using GIT1flox/flox Lyz2‐Cre (GIT1 CKO) mice, we identified that GIT1 deficiency in macrophages led to an increased generation of tumor necrosis factor‐alpha (TNFα), reduced proportion of mature oligodendrocytes (mOLs), impaired remyelination, and compromised functional recovery in vivo. These effects in GIT1 CKO mice were reversed with the administration of soluble TNF inhibitor. Moreover, bone marrow transplantation from GIT1 CWT mice reversed adverse outcomes in GIT1 CKO mice, further indicating the role of macrophage GIT1 in modulating spinal cord injury repair. Our in vitro experiments showed that macrophage GIT1 plays a critical role in secreting TNFα and influences the differentiation of oligodendrocyte precursor cells (OPCs) after stimulation with myelin debris. Collectively, our data uncovered a new role of macrophage GIT1 in regulating the transformation of OPCs into mOLs, essential for functional remyelination after SCI, suggesting that macrophage GIT1 could be a promising treatment target of SCI.
Main Points
Macrophage GIT1 inhibits TNFα secretion and facilitates the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (mOLs), thereby contributing to remyelination and improving functional recovery in mice after spinal cord injury.
‘The role of macrophage GIT1 in spinal cord injury repair’.</description><identifier>ISSN: 0894-1491</identifier><identifier>ISSN: 1098-1136</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.24577</identifier><identifier>PMID: 38899731</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Bone marrow ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell differentiation ; Cell Differentiation - physiology ; Central nervous system ; Differentiation (biology) ; Disease Models, Animal ; Extreme values ; Female ; Flox ; GIT1 ; Glial stem cells ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; Kinases ; macrophage ; Macrophages ; Macrophages - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Myelin ; Myelination ; oligodendrocyte ; Oligodendrocyte Precursor Cells - metabolism ; Oligodendrocytes ; Oligodendroglia - metabolism ; Precursors ; Recovery of function ; Recovery of Function - physiology ; Remyelination - physiology ; Spinal cord injuries ; Spinal Cord Injuries - metabolism ; Spinal Cord Injuries - pathology ; spinal cord injury ; TNF inhibitors ; TNFα ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α</subject><ispartof>Glia, 2024-09, Vol.72 (9), p.1674-1692</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2467-ed8799d8d9c6c963a5815bd2c6876918d4ca3874e456676edd686b66f6e017793</cites><orcidid>0000-0002-3255-2948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38899731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Yi, Jiang</creatorcontrib><creatorcontrib>Zhang, Chenxi</creatorcontrib><creatorcontrib>Li, Yin</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Wang, Shenyu</creatorcontrib><creatorcontrib>Dai, Siming</creatorcontrib><creatorcontrib>Zheng, Ziyang</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Xue, Ao</creatorcontrib><creatorcontrib>Huang, Zhenfei</creatorcontrib><creatorcontrib>Kong, Fanqi</creatorcontrib><creatorcontrib>Wang, Yongxiang</creatorcontrib><creatorcontrib>He, Baorong</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><creatorcontrib>Li, Qingqing</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Yin, Guoyong</creatorcontrib><creatorcontrib>Zhao, Shujie</creatorcontrib><title>Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury</title><title>Glia</title><addtitle>Glia</addtitle><description>Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function for macrophage G protein‐coupled receptor kinase‐interactor 1 (GIT1) in promoting remyelination and functional repair after SCI. Using GIT1flox/flox Lyz2‐Cre (GIT1 CKO) mice, we identified that GIT1 deficiency in macrophages led to an increased generation of tumor necrosis factor‐alpha (TNFα), reduced proportion of mature oligodendrocytes (mOLs), impaired remyelination, and compromised functional recovery in vivo. These effects in GIT1 CKO mice were reversed with the administration of soluble TNF inhibitor. Moreover, bone marrow transplantation from GIT1 CWT mice reversed adverse outcomes in GIT1 CKO mice, further indicating the role of macrophage GIT1 in modulating spinal cord injury repair. Our in vitro experiments showed that macrophage GIT1 plays a critical role in secreting TNFα and influences the differentiation of oligodendrocyte precursor cells (OPCs) after stimulation with myelin debris. Collectively, our data uncovered a new role of macrophage GIT1 in regulating the transformation of OPCs into mOLs, essential for functional remyelination after SCI, suggesting that macrophage GIT1 could be a promising treatment target of SCI.
Main Points
Macrophage GIT1 inhibits TNFα secretion and facilitates the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (mOLs), thereby contributing to remyelination and improving functional recovery in mice after spinal cord injury.
‘The role of macrophage GIT1 in spinal cord injury repair’.</description><subject>Animals</subject><subject>Bone marrow</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Central nervous system</subject><subject>Differentiation (biology)</subject><subject>Disease Models, Animal</subject><subject>Extreme values</subject><subject>Female</subject><subject>Flox</subject><subject>GIT1</subject><subject>Glial stem cells</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Kinases</subject><subject>macrophage</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Myelin</subject><subject>Myelination</subject><subject>oligodendrocyte</subject><subject>Oligodendrocyte Precursor Cells - metabolism</subject><subject>Oligodendrocytes</subject><subject>Oligodendroglia - metabolism</subject><subject>Precursors</subject><subject>Recovery of function</subject><subject>Recovery of Function - physiology</subject><subject>Remyelination - physiology</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - metabolism</subject><subject>Spinal Cord Injuries - pathology</subject><subject>spinal cord injury</subject><subject>TNF inhibitors</subject><subject>TNFα</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><issn>0894-1491</issn><issn>1098-1136</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhoMoun5c_AES8CJCNWnafBxFdF1Y8aLnkk2ma5a2WZMW6b83664ePHgaZubhZeZ9ETqn5IYSkt8uG6dv8qIUYg9NKFEyo5TxfTQhUhUZLRQ9QscxrgihqRGH6IhJqZRgdILCszbBr9_1EvB09krxOvjW9xCxb9zSW-hs8GbsIS3ADCH6gA00DbauriFA1zvdO99h3VkcoB2hcd1uUvcQcFynvsHGB4tdtxrCeIoOat1EONvVE_T2-PB6_5TNX6az-7t5ZvKCiwysFEpZaZXhRnGmS0nLhc0Nl4IrKm1hNJOigKLkXHCwlku-4LzmQKgQip2gq61ueuljgNhXrYub23UHfogVI4LInOc5S-jlH3Tlh5Du3lCSEZasKxN1vaWSYzEGqKt1cK0OY0VJtUmi2iRRfSeR4Iud5LBowf6iP9YngG6BT9fA-I9UNZ3P7raiXz0hlF4</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Liu, Hao</creator><creator>Yi, Jiang</creator><creator>Zhang, Chenxi</creator><creator>Li, Yin</creator><creator>Wang, Qian</creator><creator>Wang, Shenyu</creator><creator>Dai, Siming</creator><creator>Zheng, Ziyang</creator><creator>Jiang, Tao</creator><creator>Gao, Peng</creator><creator>Xue, Ao</creator><creator>Huang, Zhenfei</creator><creator>Kong, Fanqi</creator><creator>Wang, Yongxiang</creator><creator>He, Baorong</creator><creator>Guo, Xiaodong</creator><creator>Li, Qingqing</creator><creator>Chen, Jian</creator><creator>Yin, Guoyong</creator><creator>Zhao, Shujie</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3255-2948</orcidid></search><sort><creationdate>202409</creationdate><title>Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury</title><author>Liu, Hao ; Yi, Jiang ; Zhang, Chenxi ; Li, Yin ; Wang, Qian ; Wang, Shenyu ; Dai, Siming ; Zheng, Ziyang ; Jiang, Tao ; Gao, Peng ; Xue, Ao ; Huang, Zhenfei ; Kong, Fanqi ; Wang, Yongxiang ; He, Baorong ; Guo, Xiaodong ; Li, Qingqing ; Chen, Jian ; Yin, Guoyong ; Zhao, Shujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2467-ed8799d8d9c6c963a5815bd2c6876918d4ca3874e456676edd686b66f6e017793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Bone marrow</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Central nervous system</topic><topic>Differentiation (biology)</topic><topic>Disease Models, Animal</topic><topic>Extreme values</topic><topic>Female</topic><topic>Flox</topic><topic>GIT1</topic><topic>Glial stem cells</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Kinases</topic><topic>macrophage</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Myelin</topic><topic>Myelination</topic><topic>oligodendrocyte</topic><topic>Oligodendrocyte Precursor Cells - metabolism</topic><topic>Oligodendrocytes</topic><topic>Oligodendroglia - metabolism</topic><topic>Precursors</topic><topic>Recovery of function</topic><topic>Recovery of Function - physiology</topic><topic>Remyelination - physiology</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - metabolism</topic><topic>Spinal Cord Injuries - pathology</topic><topic>spinal cord injury</topic><topic>TNF inhibitors</topic><topic>TNFα</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Yi, Jiang</creatorcontrib><creatorcontrib>Zhang, Chenxi</creatorcontrib><creatorcontrib>Li, Yin</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Wang, Shenyu</creatorcontrib><creatorcontrib>Dai, Siming</creatorcontrib><creatorcontrib>Zheng, Ziyang</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Xue, Ao</creatorcontrib><creatorcontrib>Huang, Zhenfei</creatorcontrib><creatorcontrib>Kong, Fanqi</creatorcontrib><creatorcontrib>Wang, Yongxiang</creatorcontrib><creatorcontrib>He, Baorong</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><creatorcontrib>Li, Qingqing</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Yin, Guoyong</creatorcontrib><creatorcontrib>Zhao, Shujie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hao</au><au>Yi, Jiang</au><au>Zhang, Chenxi</au><au>Li, Yin</au><au>Wang, Qian</au><au>Wang, Shenyu</au><au>Dai, Siming</au><au>Zheng, Ziyang</au><au>Jiang, Tao</au><au>Gao, Peng</au><au>Xue, Ao</au><au>Huang, Zhenfei</au><au>Kong, Fanqi</au><au>Wang, Yongxiang</au><au>He, Baorong</au><au>Guo, Xiaodong</au><au>Li, Qingqing</au><au>Chen, Jian</au><au>Yin, Guoyong</au><au>Zhao, Shujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2024-09</date><risdate>2024</risdate><volume>72</volume><issue>9</issue><spage>1674</spage><epage>1692</epage><pages>1674-1692</pages><issn>0894-1491</issn><issn>1098-1136</issn><eissn>1098-1136</eissn><abstract>Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function for macrophage G protein‐coupled receptor kinase‐interactor 1 (GIT1) in promoting remyelination and functional repair after SCI. Using GIT1flox/flox Lyz2‐Cre (GIT1 CKO) mice, we identified that GIT1 deficiency in macrophages led to an increased generation of tumor necrosis factor‐alpha (TNFα), reduced proportion of mature oligodendrocytes (mOLs), impaired remyelination, and compromised functional recovery in vivo. These effects in GIT1 CKO mice were reversed with the administration of soluble TNF inhibitor. Moreover, bone marrow transplantation from GIT1 CWT mice reversed adverse outcomes in GIT1 CKO mice, further indicating the role of macrophage GIT1 in modulating spinal cord injury repair. Our in vitro experiments showed that macrophage GIT1 plays a critical role in secreting TNFα and influences the differentiation of oligodendrocyte precursor cells (OPCs) after stimulation with myelin debris. Collectively, our data uncovered a new role of macrophage GIT1 in regulating the transformation of OPCs into mOLs, essential for functional remyelination after SCI, suggesting that macrophage GIT1 could be a promising treatment target of SCI.
Main Points
Macrophage GIT1 inhibits TNFα secretion and facilitates the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (mOLs), thereby contributing to remyelination and improving functional recovery in mice after spinal cord injury.
‘The role of macrophage GIT1 in spinal cord injury repair’.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38899731</pmid><doi>10.1002/glia.24577</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3255-2948</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2024-09, Vol.72 (9), p.1674-1692 |
issn | 0894-1491 1098-1136 1098-1136 |
language | eng |
recordid | cdi_proquest_miscellaneous_3070826223 |
source | Wiley |
subjects | Animals Bone marrow Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell differentiation Cell Differentiation - physiology Central nervous system Differentiation (biology) Disease Models, Animal Extreme values Female Flox GIT1 Glial stem cells GTPase-Activating Proteins - genetics GTPase-Activating Proteins - metabolism Kinases macrophage Macrophages Macrophages - metabolism Mice Mice, Inbred C57BL Mice, Knockout Mice, Transgenic Myelin Myelination oligodendrocyte Oligodendrocyte Precursor Cells - metabolism Oligodendrocytes Oligodendroglia - metabolism Precursors Recovery of function Recovery of Function - physiology Remyelination - physiology Spinal cord injuries Spinal Cord Injuries - metabolism Spinal Cord Injuries - pathology spinal cord injury TNF inhibitors TNFα Tumor Necrosis Factor-alpha - metabolism Tumor necrosis factor-TNF Tumor necrosis factor-α |
title | Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrophage%20GIT1%20promotes%20oligodendrocyte%20precursor%20cell%20differentiation%20and%20remyelination%20after%20spinal%20cord%20injury&rft.jtitle=Glia&rft.au=Liu,%20Hao&rft.date=2024-09&rft.volume=72&rft.issue=9&rft.spage=1674&rft.epage=1692&rft.pages=1674-1692&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.24577&rft_dat=%3Cproquest_cross%3E3070826223%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2467-ed8799d8d9c6c963a5815bd2c6876918d4ca3874e456676edd686b66f6e017793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3083030015&rft_id=info:pmid/38899731&rfr_iscdi=true |