Loading…

Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury

Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function f...

Full description

Saved in:
Bibliographic Details
Published in:Glia 2024-09, Vol.72 (9), p.1674-1692
Main Authors: Liu, Hao, Yi, Jiang, Zhang, Chenxi, Li, Yin, Wang, Qian, Wang, Shenyu, Dai, Siming, Zheng, Ziyang, Jiang, Tao, Gao, Peng, Xue, Ao, Huang, Zhenfei, Kong, Fanqi, Wang, Yongxiang, He, Baorong, Guo, Xiaodong, Li, Qingqing, Chen, Jian, Yin, Guoyong, Zhao, Shujie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2467-ed8799d8d9c6c963a5815bd2c6876918d4ca3874e456676edd686b66f6e017793
container_end_page 1692
container_issue 9
container_start_page 1674
container_title Glia
container_volume 72
creator Liu, Hao
Yi, Jiang
Zhang, Chenxi
Li, Yin
Wang, Qian
Wang, Shenyu
Dai, Siming
Zheng, Ziyang
Jiang, Tao
Gao, Peng
Xue, Ao
Huang, Zhenfei
Kong, Fanqi
Wang, Yongxiang
He, Baorong
Guo, Xiaodong
Li, Qingqing
Chen, Jian
Yin, Guoyong
Zhao, Shujie
description Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function for macrophage G protein‐coupled receptor kinase‐interactor 1 (GIT1) in promoting remyelination and functional repair after SCI. Using GIT1flox/flox Lyz2‐Cre (GIT1 CKO) mice, we identified that GIT1 deficiency in macrophages led to an increased generation of tumor necrosis factor‐alpha (TNFα), reduced proportion of mature oligodendrocytes (mOLs), impaired remyelination, and compromised functional recovery in vivo. These effects in GIT1 CKO mice were reversed with the administration of soluble TNF inhibitor. Moreover, bone marrow transplantation from GIT1 CWT mice reversed adverse outcomes in GIT1 CKO mice, further indicating the role of macrophage GIT1 in modulating spinal cord injury repair. Our in vitro experiments showed that macrophage GIT1 plays a critical role in secreting TNFα and influences the differentiation of oligodendrocyte precursor cells (OPCs) after stimulation with myelin debris. Collectively, our data uncovered a new role of macrophage GIT1 in regulating the transformation of OPCs into mOLs, essential for functional remyelination after SCI, suggesting that macrophage GIT1 could be a promising treatment target of SCI. Main Points Macrophage GIT1 inhibits TNFα secretion and facilitates the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (mOLs), thereby contributing to remyelination and improving functional recovery in mice after spinal cord injury. ‘The role of macrophage GIT1 in spinal cord injury repair’.
doi_str_mv 10.1002/glia.24577
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070826223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070826223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2467-ed8799d8d9c6c963a5815bd2c6876918d4ca3874e456676edd686b66f6e017793</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMoun5c_AES8CJCNWnafBxFdF1Y8aLnkk2ma5a2WZMW6b83664ePHgaZubhZeZ9ETqn5IYSkt8uG6dv8qIUYg9NKFEyo5TxfTQhUhUZLRQ9QscxrgihqRGH6IhJqZRgdILCszbBr9_1EvB09krxOvjW9xCxb9zSW-hs8GbsIS3ADCH6gA00DbauriFA1zvdO99h3VkcoB2hcd1uUvcQcFynvsHGB4tdtxrCeIoOat1EONvVE_T2-PB6_5TNX6az-7t5ZvKCiwysFEpZaZXhRnGmS0nLhc0Nl4IrKm1hNJOigKLkXHCwlku-4LzmQKgQip2gq61ueuljgNhXrYub23UHfogVI4LInOc5S-jlH3Tlh5Du3lCSEZasKxN1vaWSYzEGqKt1cK0OY0VJtUmi2iRRfSeR4Iud5LBowf6iP9YngG6BT9fA-I9UNZ3P7raiXz0hlF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083030015</pqid></control><display><type>article</type><title>Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury</title><source>Wiley</source><creator>Liu, Hao ; Yi, Jiang ; Zhang, Chenxi ; Li, Yin ; Wang, Qian ; Wang, Shenyu ; Dai, Siming ; Zheng, Ziyang ; Jiang, Tao ; Gao, Peng ; Xue, Ao ; Huang, Zhenfei ; Kong, Fanqi ; Wang, Yongxiang ; He, Baorong ; Guo, Xiaodong ; Li, Qingqing ; Chen, Jian ; Yin, Guoyong ; Zhao, Shujie</creator><creatorcontrib>Liu, Hao ; Yi, Jiang ; Zhang, Chenxi ; Li, Yin ; Wang, Qian ; Wang, Shenyu ; Dai, Siming ; Zheng, Ziyang ; Jiang, Tao ; Gao, Peng ; Xue, Ao ; Huang, Zhenfei ; Kong, Fanqi ; Wang, Yongxiang ; He, Baorong ; Guo, Xiaodong ; Li, Qingqing ; Chen, Jian ; Yin, Guoyong ; Zhao, Shujie</creatorcontrib><description>Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function for macrophage G protein‐coupled receptor kinase‐interactor 1 (GIT1) in promoting remyelination and functional repair after SCI. Using GIT1flox/flox Lyz2‐Cre (GIT1 CKO) mice, we identified that GIT1 deficiency in macrophages led to an increased generation of tumor necrosis factor‐alpha (TNFα), reduced proportion of mature oligodendrocytes (mOLs), impaired remyelination, and compromised functional recovery in vivo. These effects in GIT1 CKO mice were reversed with the administration of soluble TNF inhibitor. Moreover, bone marrow transplantation from GIT1 CWT mice reversed adverse outcomes in GIT1 CKO mice, further indicating the role of macrophage GIT1 in modulating spinal cord injury repair. Our in vitro experiments showed that macrophage GIT1 plays a critical role in secreting TNFα and influences the differentiation of oligodendrocyte precursor cells (OPCs) after stimulation with myelin debris. Collectively, our data uncovered a new role of macrophage GIT1 in regulating the transformation of OPCs into mOLs, essential for functional remyelination after SCI, suggesting that macrophage GIT1 could be a promising treatment target of SCI. Main Points Macrophage GIT1 inhibits TNFα secretion and facilitates the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (mOLs), thereby contributing to remyelination and improving functional recovery in mice after spinal cord injury. ‘The role of macrophage GIT1 in spinal cord injury repair’.</description><identifier>ISSN: 0894-1491</identifier><identifier>ISSN: 1098-1136</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.24577</identifier><identifier>PMID: 38899731</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Bone marrow ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell differentiation ; Cell Differentiation - physiology ; Central nervous system ; Differentiation (biology) ; Disease Models, Animal ; Extreme values ; Female ; Flox ; GIT1 ; Glial stem cells ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; Kinases ; macrophage ; Macrophages ; Macrophages - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Myelin ; Myelination ; oligodendrocyte ; Oligodendrocyte Precursor Cells - metabolism ; Oligodendrocytes ; Oligodendroglia - metabolism ; Precursors ; Recovery of function ; Recovery of Function - physiology ; Remyelination - physiology ; Spinal cord injuries ; Spinal Cord Injuries - metabolism ; Spinal Cord Injuries - pathology ; spinal cord injury ; TNF inhibitors ; TNFα ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α</subject><ispartof>Glia, 2024-09, Vol.72 (9), p.1674-1692</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2467-ed8799d8d9c6c963a5815bd2c6876918d4ca3874e456676edd686b66f6e017793</cites><orcidid>0000-0002-3255-2948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38899731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Yi, Jiang</creatorcontrib><creatorcontrib>Zhang, Chenxi</creatorcontrib><creatorcontrib>Li, Yin</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Wang, Shenyu</creatorcontrib><creatorcontrib>Dai, Siming</creatorcontrib><creatorcontrib>Zheng, Ziyang</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Xue, Ao</creatorcontrib><creatorcontrib>Huang, Zhenfei</creatorcontrib><creatorcontrib>Kong, Fanqi</creatorcontrib><creatorcontrib>Wang, Yongxiang</creatorcontrib><creatorcontrib>He, Baorong</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><creatorcontrib>Li, Qingqing</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Yin, Guoyong</creatorcontrib><creatorcontrib>Zhao, Shujie</creatorcontrib><title>Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury</title><title>Glia</title><addtitle>Glia</addtitle><description>Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function for macrophage G protein‐coupled receptor kinase‐interactor 1 (GIT1) in promoting remyelination and functional repair after SCI. Using GIT1flox/flox Lyz2‐Cre (GIT1 CKO) mice, we identified that GIT1 deficiency in macrophages led to an increased generation of tumor necrosis factor‐alpha (TNFα), reduced proportion of mature oligodendrocytes (mOLs), impaired remyelination, and compromised functional recovery in vivo. These effects in GIT1 CKO mice were reversed with the administration of soluble TNF inhibitor. Moreover, bone marrow transplantation from GIT1 CWT mice reversed adverse outcomes in GIT1 CKO mice, further indicating the role of macrophage GIT1 in modulating spinal cord injury repair. Our in vitro experiments showed that macrophage GIT1 plays a critical role in secreting TNFα and influences the differentiation of oligodendrocyte precursor cells (OPCs) after stimulation with myelin debris. Collectively, our data uncovered a new role of macrophage GIT1 in regulating the transformation of OPCs into mOLs, essential for functional remyelination after SCI, suggesting that macrophage GIT1 could be a promising treatment target of SCI. Main Points Macrophage GIT1 inhibits TNFα secretion and facilitates the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (mOLs), thereby contributing to remyelination and improving functional recovery in mice after spinal cord injury. ‘The role of macrophage GIT1 in spinal cord injury repair’.</description><subject>Animals</subject><subject>Bone marrow</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Central nervous system</subject><subject>Differentiation (biology)</subject><subject>Disease Models, Animal</subject><subject>Extreme values</subject><subject>Female</subject><subject>Flox</subject><subject>GIT1</subject><subject>Glial stem cells</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Kinases</subject><subject>macrophage</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Myelin</subject><subject>Myelination</subject><subject>oligodendrocyte</subject><subject>Oligodendrocyte Precursor Cells - metabolism</subject><subject>Oligodendrocytes</subject><subject>Oligodendroglia - metabolism</subject><subject>Precursors</subject><subject>Recovery of function</subject><subject>Recovery of Function - physiology</subject><subject>Remyelination - physiology</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - metabolism</subject><subject>Spinal Cord Injuries - pathology</subject><subject>spinal cord injury</subject><subject>TNF inhibitors</subject><subject>TNFα</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><issn>0894-1491</issn><issn>1098-1136</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhoMoun5c_AES8CJCNWnafBxFdF1Y8aLnkk2ma5a2WZMW6b83664ePHgaZubhZeZ9ETqn5IYSkt8uG6dv8qIUYg9NKFEyo5TxfTQhUhUZLRQ9QscxrgihqRGH6IhJqZRgdILCszbBr9_1EvB09krxOvjW9xCxb9zSW-hs8GbsIS3ADCH6gA00DbauriFA1zvdO99h3VkcoB2hcd1uUvcQcFynvsHGB4tdtxrCeIoOat1EONvVE_T2-PB6_5TNX6az-7t5ZvKCiwysFEpZaZXhRnGmS0nLhc0Nl4IrKm1hNJOigKLkXHCwlku-4LzmQKgQip2gq61ueuljgNhXrYub23UHfogVI4LInOc5S-jlH3Tlh5Du3lCSEZasKxN1vaWSYzEGqKt1cK0OY0VJtUmi2iRRfSeR4Iud5LBowf6iP9YngG6BT9fA-I9UNZ3P7raiXz0hlF4</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Liu, Hao</creator><creator>Yi, Jiang</creator><creator>Zhang, Chenxi</creator><creator>Li, Yin</creator><creator>Wang, Qian</creator><creator>Wang, Shenyu</creator><creator>Dai, Siming</creator><creator>Zheng, Ziyang</creator><creator>Jiang, Tao</creator><creator>Gao, Peng</creator><creator>Xue, Ao</creator><creator>Huang, Zhenfei</creator><creator>Kong, Fanqi</creator><creator>Wang, Yongxiang</creator><creator>He, Baorong</creator><creator>Guo, Xiaodong</creator><creator>Li, Qingqing</creator><creator>Chen, Jian</creator><creator>Yin, Guoyong</creator><creator>Zhao, Shujie</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3255-2948</orcidid></search><sort><creationdate>202409</creationdate><title>Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury</title><author>Liu, Hao ; Yi, Jiang ; Zhang, Chenxi ; Li, Yin ; Wang, Qian ; Wang, Shenyu ; Dai, Siming ; Zheng, Ziyang ; Jiang, Tao ; Gao, Peng ; Xue, Ao ; Huang, Zhenfei ; Kong, Fanqi ; Wang, Yongxiang ; He, Baorong ; Guo, Xiaodong ; Li, Qingqing ; Chen, Jian ; Yin, Guoyong ; Zhao, Shujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2467-ed8799d8d9c6c963a5815bd2c6876918d4ca3874e456676edd686b66f6e017793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Bone marrow</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Central nervous system</topic><topic>Differentiation (biology)</topic><topic>Disease Models, Animal</topic><topic>Extreme values</topic><topic>Female</topic><topic>Flox</topic><topic>GIT1</topic><topic>Glial stem cells</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Kinases</topic><topic>macrophage</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Myelin</topic><topic>Myelination</topic><topic>oligodendrocyte</topic><topic>Oligodendrocyte Precursor Cells - metabolism</topic><topic>Oligodendrocytes</topic><topic>Oligodendroglia - metabolism</topic><topic>Precursors</topic><topic>Recovery of function</topic><topic>Recovery of Function - physiology</topic><topic>Remyelination - physiology</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - metabolism</topic><topic>Spinal Cord Injuries - pathology</topic><topic>spinal cord injury</topic><topic>TNF inhibitors</topic><topic>TNFα</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Yi, Jiang</creatorcontrib><creatorcontrib>Zhang, Chenxi</creatorcontrib><creatorcontrib>Li, Yin</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Wang, Shenyu</creatorcontrib><creatorcontrib>Dai, Siming</creatorcontrib><creatorcontrib>Zheng, Ziyang</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Xue, Ao</creatorcontrib><creatorcontrib>Huang, Zhenfei</creatorcontrib><creatorcontrib>Kong, Fanqi</creatorcontrib><creatorcontrib>Wang, Yongxiang</creatorcontrib><creatorcontrib>He, Baorong</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><creatorcontrib>Li, Qingqing</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Yin, Guoyong</creatorcontrib><creatorcontrib>Zhao, Shujie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hao</au><au>Yi, Jiang</au><au>Zhang, Chenxi</au><au>Li, Yin</au><au>Wang, Qian</au><au>Wang, Shenyu</au><au>Dai, Siming</au><au>Zheng, Ziyang</au><au>Jiang, Tao</au><au>Gao, Peng</au><au>Xue, Ao</au><au>Huang, Zhenfei</au><au>Kong, Fanqi</au><au>Wang, Yongxiang</au><au>He, Baorong</au><au>Guo, Xiaodong</au><au>Li, Qingqing</au><au>Chen, Jian</au><au>Yin, Guoyong</au><au>Zhao, Shujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2024-09</date><risdate>2024</risdate><volume>72</volume><issue>9</issue><spage>1674</spage><epage>1692</epage><pages>1674-1692</pages><issn>0894-1491</issn><issn>1098-1136</issn><eissn>1098-1136</eissn><abstract>Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function for macrophage G protein‐coupled receptor kinase‐interactor 1 (GIT1) in promoting remyelination and functional repair after SCI. Using GIT1flox/flox Lyz2‐Cre (GIT1 CKO) mice, we identified that GIT1 deficiency in macrophages led to an increased generation of tumor necrosis factor‐alpha (TNFα), reduced proportion of mature oligodendrocytes (mOLs), impaired remyelination, and compromised functional recovery in vivo. These effects in GIT1 CKO mice were reversed with the administration of soluble TNF inhibitor. Moreover, bone marrow transplantation from GIT1 CWT mice reversed adverse outcomes in GIT1 CKO mice, further indicating the role of macrophage GIT1 in modulating spinal cord injury repair. Our in vitro experiments showed that macrophage GIT1 plays a critical role in secreting TNFα and influences the differentiation of oligodendrocyte precursor cells (OPCs) after stimulation with myelin debris. Collectively, our data uncovered a new role of macrophage GIT1 in regulating the transformation of OPCs into mOLs, essential for functional remyelination after SCI, suggesting that macrophage GIT1 could be a promising treatment target of SCI. Main Points Macrophage GIT1 inhibits TNFα secretion and facilitates the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (mOLs), thereby contributing to remyelination and improving functional recovery in mice after spinal cord injury. ‘The role of macrophage GIT1 in spinal cord injury repair’.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38899731</pmid><doi>10.1002/glia.24577</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3255-2948</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2024-09, Vol.72 (9), p.1674-1692
issn 0894-1491
1098-1136
1098-1136
language eng
recordid cdi_proquest_miscellaneous_3070826223
source Wiley
subjects Animals
Bone marrow
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell differentiation
Cell Differentiation - physiology
Central nervous system
Differentiation (biology)
Disease Models, Animal
Extreme values
Female
Flox
GIT1
Glial stem cells
GTPase-Activating Proteins - genetics
GTPase-Activating Proteins - metabolism
Kinases
macrophage
Macrophages
Macrophages - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Myelin
Myelination
oligodendrocyte
Oligodendrocyte Precursor Cells - metabolism
Oligodendrocytes
Oligodendroglia - metabolism
Precursors
Recovery of function
Recovery of Function - physiology
Remyelination - physiology
Spinal cord injuries
Spinal Cord Injuries - metabolism
Spinal Cord Injuries - pathology
spinal cord injury
TNF inhibitors
TNFα
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-TNF
Tumor necrosis factor-α
title Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrophage%20GIT1%20promotes%20oligodendrocyte%20precursor%20cell%20differentiation%20and%20remyelination%20after%20spinal%20cord%20injury&rft.jtitle=Glia&rft.au=Liu,%20Hao&rft.date=2024-09&rft.volume=72&rft.issue=9&rft.spage=1674&rft.epage=1692&rft.pages=1674-1692&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.24577&rft_dat=%3Cproquest_cross%3E3070826223%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2467-ed8799d8d9c6c963a5815bd2c6876918d4ca3874e456676edd686b66f6e017793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3083030015&rft_id=info:pmid/38899731&rfr_iscdi=true