Loading…

Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells

The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film,...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-07, Vol.16 (26), p.34377-34385
Main Authors: Xu, Zhengjie, Lou, Qiang, Chen, Jiahao, Xu, Xinxin, Luo, Shiqiang, Nie, Zanxiang, Zhang, Shengdong, Zhou, Hang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 34385
container_issue 26
container_start_page 34377
container_title ACS applied materials & interfaces
container_volume 16
creator Xu, Zhengjie
Lou, Qiang
Chen, Jiahao
Xu, Xinxin
Luo, Shiqiang
Nie, Zanxiang
Zhang, Shengdong
Zhou, Hang
description The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film, which directly influences the film formation of solution-processed SnO2, is equally important but receives relatively less attention. Herein, we present a synergetic optimization approach involving the deposition of aluminum oxide (AlOx) via atomic layer deposition (ALD) as a buffer layer and the incorporation of rubidium acetate (RbAc) as an upper surface passivation additive. This process leads to a conformal coating of SnO2 nanoparticles, improved electrical performance, and higher-quality perovskite crystals. As a result, with this composite ETL film, the power conversion efficiency (PCE) reached 22.41 from 20.77%. Further modification with p-butyl iodide (BAI) on the perovskite upper surface increased the champion PCE to 23.32%, with a voltage loss of 0.41 V, ranking among the lowest values for the triple-cation mixed-halide perovskite absorber (1.58 eV). Importantly, the perovskite solar cells remained 87.30% of its initial performance after 14 days of aging and exhibited photostability under long-term UV (254 nm) illumination.
doi_str_mv 10.1021/acsami.4c05629
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070841232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070841232</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-ed06225a4a37ca109dfc5fd3d2fc441049aa2a408eccf6fd8e0a2c9051a1efe83</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhhdRsFavnnMUYWuSzba7RylqhYUKbc_LkJ20qdtkTVKlnnwCL76hT2JKi4dhfmb--Rm-JLlmdMAoZ3cgPWz0QEiaD3l5kvRYKURa8Jyf_mshzpML79eUDjNO817yPdsZdEsMWpJpF_RGf0LQ1hCryKLr0BEwDansR1SzrVMg0e93YYVkZqacPLQog4sHcwfGd9YFUsEuupV1ZKKXq_QFXdQbMBKJ-f360bE6Eqf23b_qEHNsC46MsW39ZXKmoPV4dez9ZPH4MB9P0mr69Dy-r1JgeRZSbOiQ8xwEZCMJjJaNkrlqsoYrKQSjogTgIGiBUqqhagqkwGVJcwYMFRZZP7k55HbOvm3Rh3qjvYwfgEG79XVGR7QQjGc8Wm8P1si3XtutM_GxmtF6D70-QK-P0LM_ATF6ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070841232</pqid></control><display><type>article</type><title>Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Xu, Zhengjie ; Lou, Qiang ; Chen, Jiahao ; Xu, Xinxin ; Luo, Shiqiang ; Nie, Zanxiang ; Zhang, Shengdong ; Zhou, Hang</creator><creatorcontrib>Xu, Zhengjie ; Lou, Qiang ; Chen, Jiahao ; Xu, Xinxin ; Luo, Shiqiang ; Nie, Zanxiang ; Zhang, Shengdong ; Zhou, Hang</creatorcontrib><description>The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film, which directly influences the film formation of solution-processed SnO2, is equally important but receives relatively less attention. Herein, we present a synergetic optimization approach involving the deposition of aluminum oxide (AlOx) via atomic layer deposition (ALD) as a buffer layer and the incorporation of rubidium acetate (RbAc) as an upper surface passivation additive. This process leads to a conformal coating of SnO2 nanoparticles, improved electrical performance, and higher-quality perovskite crystals. As a result, with this composite ETL film, the power conversion efficiency (PCE) reached 22.41 from 20.77%. Further modification with p-butyl iodide (BAI) on the perovskite upper surface increased the champion PCE to 23.32%, with a voltage loss of 0.41 V, ranking among the lowest values for the triple-cation mixed-halide perovskite absorber (1.58 eV). Importantly, the perovskite solar cells remained 87.30% of its initial performance after 14 days of aging and exhibited photostability under long-term UV (254 nm) illumination.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c05629</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-07, Vol.16 (26), p.34377-34385</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0472-9515 ; 0000-0002-3593-4327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Zhengjie</creatorcontrib><creatorcontrib>Lou, Qiang</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Xu, Xinxin</creatorcontrib><creatorcontrib>Luo, Shiqiang</creatorcontrib><creatorcontrib>Nie, Zanxiang</creatorcontrib><creatorcontrib>Zhang, Shengdong</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><title>Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film, which directly influences the film formation of solution-processed SnO2, is equally important but receives relatively less attention. Herein, we present a synergetic optimization approach involving the deposition of aluminum oxide (AlOx) via atomic layer deposition (ALD) as a buffer layer and the incorporation of rubidium acetate (RbAc) as an upper surface passivation additive. This process leads to a conformal coating of SnO2 nanoparticles, improved electrical performance, and higher-quality perovskite crystals. As a result, with this composite ETL film, the power conversion efficiency (PCE) reached 22.41 from 20.77%. Further modification with p-butyl iodide (BAI) on the perovskite upper surface increased the champion PCE to 23.32%, with a voltage loss of 0.41 V, ranking among the lowest values for the triple-cation mixed-halide perovskite absorber (1.58 eV). Importantly, the perovskite solar cells remained 87.30% of its initial performance after 14 days of aging and exhibited photostability under long-term UV (254 nm) illumination.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEQhhdRsFavnnMUYWuSzba7RylqhYUKbc_LkJ20qdtkTVKlnnwCL76hT2JKi4dhfmb--Rm-JLlmdMAoZ3cgPWz0QEiaD3l5kvRYKURa8Jyf_mshzpML79eUDjNO817yPdsZdEsMWpJpF_RGf0LQ1hCryKLr0BEwDansR1SzrVMg0e93YYVkZqacPLQog4sHcwfGd9YFUsEuupV1ZKKXq_QFXdQbMBKJ-f360bE6Eqf23b_qEHNsC46MsW39ZXKmoPV4dez9ZPH4MB9P0mr69Dy-r1JgeRZSbOiQ8xwEZCMJjJaNkrlqsoYrKQSjogTgIGiBUqqhagqkwGVJcwYMFRZZP7k55HbOvm3Rh3qjvYwfgEG79XVGR7QQjGc8Wm8P1si3XtutM_GxmtF6D70-QK-P0LM_ATF6ww</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Xu, Zhengjie</creator><creator>Lou, Qiang</creator><creator>Chen, Jiahao</creator><creator>Xu, Xinxin</creator><creator>Luo, Shiqiang</creator><creator>Nie, Zanxiang</creator><creator>Zhang, Shengdong</creator><creator>Zhou, Hang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0472-9515</orcidid><orcidid>https://orcid.org/0000-0002-3593-4327</orcidid></search><sort><creationdate>20240703</creationdate><title>Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells</title><author>Xu, Zhengjie ; Lou, Qiang ; Chen, Jiahao ; Xu, Xinxin ; Luo, Shiqiang ; Nie, Zanxiang ; Zhang, Shengdong ; Zhou, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-ed06225a4a37ca109dfc5fd3d2fc441049aa2a408eccf6fd8e0a2c9051a1efe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhengjie</creatorcontrib><creatorcontrib>Lou, Qiang</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Xu, Xinxin</creatorcontrib><creatorcontrib>Luo, Shiqiang</creatorcontrib><creatorcontrib>Nie, Zanxiang</creatorcontrib><creatorcontrib>Zhang, Shengdong</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhengjie</au><au>Lou, Qiang</au><au>Chen, Jiahao</au><au>Xu, Xinxin</au><au>Luo, Shiqiang</au><au>Nie, Zanxiang</au><au>Zhang, Shengdong</au><au>Zhou, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-03</date><risdate>2024</risdate><volume>16</volume><issue>26</issue><spage>34377</spage><epage>34385</epage><pages>34377-34385</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film, which directly influences the film formation of solution-processed SnO2, is equally important but receives relatively less attention. Herein, we present a synergetic optimization approach involving the deposition of aluminum oxide (AlOx) via atomic layer deposition (ALD) as a buffer layer and the incorporation of rubidium acetate (RbAc) as an upper surface passivation additive. This process leads to a conformal coating of SnO2 nanoparticles, improved electrical performance, and higher-quality perovskite crystals. As a result, with this composite ETL film, the power conversion efficiency (PCE) reached 22.41 from 20.77%. Further modification with p-butyl iodide (BAI) on the perovskite upper surface increased the champion PCE to 23.32%, with a voltage loss of 0.41 V, ranking among the lowest values for the triple-cation mixed-halide perovskite absorber (1.58 eV). Importantly, the perovskite solar cells remained 87.30% of its initial performance after 14 days of aging and exhibited photostability under long-term UV (254 nm) illumination.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c05629</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0472-9515</orcidid><orcidid>https://orcid.org/0000-0002-3593-4327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-07, Vol.16 (26), p.34377-34385
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3070841232
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Surfaces, Interfaces, and Applications
title Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergetic%20Optimization%20of%20Upper%20and%20Lower%20Surfaces%20of%20the%20SnO2%20Electron%20Transport%20Layer%20for%20High-Performance%20n%E2%80%93i%E2%80%93p%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xu,%20Zhengjie&rft.date=2024-07-03&rft.volume=16&rft.issue=26&rft.spage=34377&rft.epage=34385&rft.pages=34377-34385&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c05629&rft_dat=%3Cproquest_acs_j%3E3070841232%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-ed06225a4a37ca109dfc5fd3d2fc441049aa2a408eccf6fd8e0a2c9051a1efe83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070841232&rft_id=info:pmid/&rfr_iscdi=true