Loading…
Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells
The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film,...
Saved in:
Published in: | ACS applied materials & interfaces 2024-07, Vol.16 (26), p.34377-34385 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 34385 |
container_issue | 26 |
container_start_page | 34377 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Xu, Zhengjie Lou, Qiang Chen, Jiahao Xu, Xinxin Luo, Shiqiang Nie, Zanxiang Zhang, Shengdong Zhou, Hang |
description | The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film, which directly influences the film formation of solution-processed SnO2, is equally important but receives relatively less attention. Herein, we present a synergetic optimization approach involving the deposition of aluminum oxide (AlOx) via atomic layer deposition (ALD) as a buffer layer and the incorporation of rubidium acetate (RbAc) as an upper surface passivation additive. This process leads to a conformal coating of SnO2 nanoparticles, improved electrical performance, and higher-quality perovskite crystals. As a result, with this composite ETL film, the power conversion efficiency (PCE) reached 22.41 from 20.77%. Further modification with p-butyl iodide (BAI) on the perovskite upper surface increased the champion PCE to 23.32%, with a voltage loss of 0.41 V, ranking among the lowest values for the triple-cation mixed-halide perovskite absorber (1.58 eV). Importantly, the perovskite solar cells remained 87.30% of its initial performance after 14 days of aging and exhibited photostability under long-term UV (254 nm) illumination. |
doi_str_mv | 10.1021/acsami.4c05629 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070841232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070841232</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-ed06225a4a37ca109dfc5fd3d2fc441049aa2a408eccf6fd8e0a2c9051a1efe83</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhhdRsFavnnMUYWuSzba7RylqhYUKbc_LkJ20qdtkTVKlnnwCL76hT2JKi4dhfmb--Rm-JLlmdMAoZ3cgPWz0QEiaD3l5kvRYKURa8Jyf_mshzpML79eUDjNO817yPdsZdEsMWpJpF_RGf0LQ1hCryKLr0BEwDansR1SzrVMg0e93YYVkZqacPLQog4sHcwfGd9YFUsEuupV1ZKKXq_QFXdQbMBKJ-f360bE6Eqf23b_qEHNsC46MsW39ZXKmoPV4dez9ZPH4MB9P0mr69Dy-r1JgeRZSbOiQ8xwEZCMJjJaNkrlqsoYrKQSjogTgIGiBUqqhagqkwGVJcwYMFRZZP7k55HbOvm3Rh3qjvYwfgEG79XVGR7QQjGc8Wm8P1si3XtutM_GxmtF6D70-QK-P0LM_ATF6ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070841232</pqid></control><display><type>article</type><title>Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Xu, Zhengjie ; Lou, Qiang ; Chen, Jiahao ; Xu, Xinxin ; Luo, Shiqiang ; Nie, Zanxiang ; Zhang, Shengdong ; Zhou, Hang</creator><creatorcontrib>Xu, Zhengjie ; Lou, Qiang ; Chen, Jiahao ; Xu, Xinxin ; Luo, Shiqiang ; Nie, Zanxiang ; Zhang, Shengdong ; Zhou, Hang</creatorcontrib><description>The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film, which directly influences the film formation of solution-processed SnO2, is equally important but receives relatively less attention. Herein, we present a synergetic optimization approach involving the deposition of aluminum oxide (AlOx) via atomic layer deposition (ALD) as a buffer layer and the incorporation of rubidium acetate (RbAc) as an upper surface passivation additive. This process leads to a conformal coating of SnO2 nanoparticles, improved electrical performance, and higher-quality perovskite crystals. As a result, with this composite ETL film, the power conversion efficiency (PCE) reached 22.41 from 20.77%. Further modification with p-butyl iodide (BAI) on the perovskite upper surface increased the champion PCE to 23.32%, with a voltage loss of 0.41 V, ranking among the lowest values for the triple-cation mixed-halide perovskite absorber (1.58 eV). Importantly, the perovskite solar cells remained 87.30% of its initial performance after 14 days of aging and exhibited photostability under long-term UV (254 nm) illumination.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c05629</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials & interfaces, 2024-07, Vol.16 (26), p.34377-34385</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0472-9515 ; 0000-0002-3593-4327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Zhengjie</creatorcontrib><creatorcontrib>Lou, Qiang</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Xu, Xinxin</creatorcontrib><creatorcontrib>Luo, Shiqiang</creatorcontrib><creatorcontrib>Nie, Zanxiang</creatorcontrib><creatorcontrib>Zhang, Shengdong</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><title>Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film, which directly influences the film formation of solution-processed SnO2, is equally important but receives relatively less attention. Herein, we present a synergetic optimization approach involving the deposition of aluminum oxide (AlOx) via atomic layer deposition (ALD) as a buffer layer and the incorporation of rubidium acetate (RbAc) as an upper surface passivation additive. This process leads to a conformal coating of SnO2 nanoparticles, improved electrical performance, and higher-quality perovskite crystals. As a result, with this composite ETL film, the power conversion efficiency (PCE) reached 22.41 from 20.77%. Further modification with p-butyl iodide (BAI) on the perovskite upper surface increased the champion PCE to 23.32%, with a voltage loss of 0.41 V, ranking among the lowest values for the triple-cation mixed-halide perovskite absorber (1.58 eV). Importantly, the perovskite solar cells remained 87.30% of its initial performance after 14 days of aging and exhibited photostability under long-term UV (254 nm) illumination.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEQhhdRsFavnnMUYWuSzba7RylqhYUKbc_LkJ20qdtkTVKlnnwCL76hT2JKi4dhfmb--Rm-JLlmdMAoZ3cgPWz0QEiaD3l5kvRYKURa8Jyf_mshzpML79eUDjNO817yPdsZdEsMWpJpF_RGf0LQ1hCryKLr0BEwDansR1SzrVMg0e93YYVkZqacPLQog4sHcwfGd9YFUsEuupV1ZKKXq_QFXdQbMBKJ-f360bE6Eqf23b_qEHNsC46MsW39ZXKmoPV4dez9ZPH4MB9P0mr69Dy-r1JgeRZSbOiQ8xwEZCMJjJaNkrlqsoYrKQSjogTgIGiBUqqhagqkwGVJcwYMFRZZP7k55HbOvm3Rh3qjvYwfgEG79XVGR7QQjGc8Wm8P1si3XtutM_GxmtF6D70-QK-P0LM_ATF6ww</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Xu, Zhengjie</creator><creator>Lou, Qiang</creator><creator>Chen, Jiahao</creator><creator>Xu, Xinxin</creator><creator>Luo, Shiqiang</creator><creator>Nie, Zanxiang</creator><creator>Zhang, Shengdong</creator><creator>Zhou, Hang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0472-9515</orcidid><orcidid>https://orcid.org/0000-0002-3593-4327</orcidid></search><sort><creationdate>20240703</creationdate><title>Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells</title><author>Xu, Zhengjie ; Lou, Qiang ; Chen, Jiahao ; Xu, Xinxin ; Luo, Shiqiang ; Nie, Zanxiang ; Zhang, Shengdong ; Zhou, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-ed06225a4a37ca109dfc5fd3d2fc441049aa2a408eccf6fd8e0a2c9051a1efe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhengjie</creatorcontrib><creatorcontrib>Lou, Qiang</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Xu, Xinxin</creatorcontrib><creatorcontrib>Luo, Shiqiang</creatorcontrib><creatorcontrib>Nie, Zanxiang</creatorcontrib><creatorcontrib>Zhang, Shengdong</creatorcontrib><creatorcontrib>Zhou, Hang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhengjie</au><au>Lou, Qiang</au><au>Chen, Jiahao</au><au>Xu, Xinxin</au><au>Luo, Shiqiang</au><au>Nie, Zanxiang</au><au>Zhang, Shengdong</au><au>Zhou, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-03</date><risdate>2024</risdate><volume>16</volume><issue>26</issue><spage>34377</spage><epage>34385</epage><pages>34377-34385</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The SnO2 electron transport layer (ETL) has been recognized as one of the most effective protocols for achieving high-efficiency perovskite solar cells (PSCs). To date, most research has primarily focused on the modification of the upper surface of SnO2 ETL films. The lower surface of the SnO2 film, which directly influences the film formation of solution-processed SnO2, is equally important but receives relatively less attention. Herein, we present a synergetic optimization approach involving the deposition of aluminum oxide (AlOx) via atomic layer deposition (ALD) as a buffer layer and the incorporation of rubidium acetate (RbAc) as an upper surface passivation additive. This process leads to a conformal coating of SnO2 nanoparticles, improved electrical performance, and higher-quality perovskite crystals. As a result, with this composite ETL film, the power conversion efficiency (PCE) reached 22.41 from 20.77%. Further modification with p-butyl iodide (BAI) on the perovskite upper surface increased the champion PCE to 23.32%, with a voltage loss of 0.41 V, ranking among the lowest values for the triple-cation mixed-halide perovskite absorber (1.58 eV). Importantly, the perovskite solar cells remained 87.30% of its initial performance after 14 days of aging and exhibited photostability under long-term UV (254 nm) illumination.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c05629</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0472-9515</orcidid><orcidid>https://orcid.org/0000-0002-3593-4327</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-07, Vol.16 (26), p.34377-34385 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3070841232 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Surfaces, Interfaces, and Applications |
title | Synergetic Optimization of Upper and Lower Surfaces of the SnO2 Electron Transport Layer for High-Performance n–i–p Perovskite Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergetic%20Optimization%20of%20Upper%20and%20Lower%20Surfaces%20of%20the%20SnO2%20Electron%20Transport%20Layer%20for%20High-Performance%20n%E2%80%93i%E2%80%93p%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xu,%20Zhengjie&rft.date=2024-07-03&rft.volume=16&rft.issue=26&rft.spage=34377&rft.epage=34385&rft.pages=34377-34385&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c05629&rft_dat=%3Cproquest_acs_j%3E3070841232%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-ed06225a4a37ca109dfc5fd3d2fc441049aa2a408eccf6fd8e0a2c9051a1efe83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070841232&rft_id=info:pmid/&rfr_iscdi=true |