Loading…
A rapid near-infrared turn on fluorescence probe for the detection of sulfite in food and its application in biological imaging
A near-infrared fluorescent “turn on” probe DTMI featuring simple skeleton was constructed easily. It undergoes a structure transformation from an A−π−A to a D−π−A framework towards SO32−. Besides, DTMI is capable of distinctive sensing sulfite with a fast response and a significant Stokes shift as...
Saved in:
Published in: | Talanta (Oxford) 2024-10, Vol.278, p.126445, Article 126445 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c243t-3677fd399a69a91b06b9164d2970954099712af99da6df1c7e487723611cb85f3 |
container_end_page | |
container_issue | |
container_start_page | 126445 |
container_title | Talanta (Oxford) |
container_volume | 278 |
creator | Li, Shufei Hong, Jiaxin Xia, Xinyu Duan, Luying Yang, Wuying Xiong, Jianhua Yin, Xiaoli Hong, Yanping |
description | A near-infrared fluorescent “turn on” probe DTMI featuring simple skeleton was constructed easily. It undergoes a structure transformation from an A−π−A to a D−π−A framework towards SO32−. Besides, DTMI is capable of distinctive sensing sulfite with a fast response and a significant Stokes shift as well as with high sensitivity, excellent selectivity, long-term stability of fluorescence signals, and good anti-interference ability. The detection limit (LOD) of DTMI for sulfite within the linear concentration range of 0.5–10 μM is 27.39 nM. More importantly, DTMI has been favorably utilized for detecting sulfite in food samples such as red wine and vermicelli. Based on its low biotoxicity, DTMI has been successfully applied in imaging experiments involving HeLa cells, onion inner epidermal cells, and zebrafish. Therefore, the results show that the presented probe possesses potential sensing activity towards sulfite in complex biological system and food samples.
[Display omitted]
•Turn on fluorescent emission derived from structural alteration from A−π−A to D−π−A.•Rapid and accurate detection of SO2 with high sensitivity and selectivity.•Stable near-infrared fluorescence signal with a nanomolar LOD.•Sniffing sulfite within food samples and living cells. |
doi_str_mv | 10.1016/j.talanta.2024.126445 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3071282540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914024008245</els_id><sourcerecordid>3071282540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-3677fd399a69a91b06b9164d2970954099712af99da6df1c7e487723611cb85f3</originalsourceid><addsrcrecordid>eNqFkM1OJCEUhYkZo-3PI8yEpZtq-akqipUxZkZNTNzomlBwaelUFyVQJq58dWm7dTsrEvjOvZwPod-ULCmh7eV6mfWgx6yXjLB6SVlb180BWtBO8Io3gv9CC0K4rCStyTE6SWlNCGGc8CN0zDtJOsrlAn1c46gnb_EIOlZ-dFFHsDjPccRhxG6YQ4RkYDSApxh6wC5EnF8AW8hgsi9QcDjNg_MZsC-RECzWo8U-J6ynafBGf2HlrfdhCKtyMWC_0Ss_rs7QodNDgvP9eYqe__19urmrHh5v72-uHyrDap4r3grhLJdSt1JL2pO2l7StLZOCyKYmUgrKtJPS6tY6agTUnRCMt5SavmscP0UXu7mlxOsMKauNL7WGohDCnBQnZUDHyqiCNjvUxJBSBKemWH4b3xUlauterdXevdq6Vzv3Jfdnv2LuN2B_Ut-yC3C1A6AUffMQVTJ-a9b6WFQqG_x_VnwCZpqYYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071282540</pqid></control><display><type>article</type><title>A rapid near-infrared turn on fluorescence probe for the detection of sulfite in food and its application in biological imaging</title><source>Elsevier</source><creator>Li, Shufei ; Hong, Jiaxin ; Xia, Xinyu ; Duan, Luying ; Yang, Wuying ; Xiong, Jianhua ; Yin, Xiaoli ; Hong, Yanping</creator><creatorcontrib>Li, Shufei ; Hong, Jiaxin ; Xia, Xinyu ; Duan, Luying ; Yang, Wuying ; Xiong, Jianhua ; Yin, Xiaoli ; Hong, Yanping</creatorcontrib><description>A near-infrared fluorescent “turn on” probe DTMI featuring simple skeleton was constructed easily. It undergoes a structure transformation from an A−π−A to a D−π−A framework towards SO32−. Besides, DTMI is capable of distinctive sensing sulfite with a fast response and a significant Stokes shift as well as with high sensitivity, excellent selectivity, long-term stability of fluorescence signals, and good anti-interference ability. The detection limit (LOD) of DTMI for sulfite within the linear concentration range of 0.5–10 μM is 27.39 nM. More importantly, DTMI has been favorably utilized for detecting sulfite in food samples such as red wine and vermicelli. Based on its low biotoxicity, DTMI has been successfully applied in imaging experiments involving HeLa cells, onion inner epidermal cells, and zebrafish. Therefore, the results show that the presented probe possesses potential sensing activity towards sulfite in complex biological system and food samples.
[Display omitted]
•Turn on fluorescent emission derived from structural alteration from A−π−A to D−π−A.•Rapid and accurate detection of SO2 with high sensitivity and selectivity.•Stable near-infrared fluorescence signal with a nanomolar LOD.•Sniffing sulfite within food samples and living cells.</description><identifier>ISSN: 0039-9140</identifier><identifier>ISSN: 1873-3573</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2024.126445</identifier><identifier>PMID: 38908139</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Bioimaging ; Fluorescent Dyes - chemistry ; Food Analysis - methods ; Food Contamination - analysis ; HeLa Cells ; Humans ; Limit of Detection ; Near-infrared fluorescent probe ; Onions - chemistry ; Optical Imaging - methods ; Real food samples ; Spectrometry, Fluorescence - methods ; Sulfite ; Sulfites - analysis ; Sulfites - chemistry ; Wine - analysis ; Zebrafish</subject><ispartof>Talanta (Oxford), 2024-10, Vol.278, p.126445, Article 126445</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-3677fd399a69a91b06b9164d2970954099712af99da6df1c7e487723611cb85f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38908139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shufei</creatorcontrib><creatorcontrib>Hong, Jiaxin</creatorcontrib><creatorcontrib>Xia, Xinyu</creatorcontrib><creatorcontrib>Duan, Luying</creatorcontrib><creatorcontrib>Yang, Wuying</creatorcontrib><creatorcontrib>Xiong, Jianhua</creatorcontrib><creatorcontrib>Yin, Xiaoli</creatorcontrib><creatorcontrib>Hong, Yanping</creatorcontrib><title>A rapid near-infrared turn on fluorescence probe for the detection of sulfite in food and its application in biological imaging</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>A near-infrared fluorescent “turn on” probe DTMI featuring simple skeleton was constructed easily. It undergoes a structure transformation from an A−π−A to a D−π−A framework towards SO32−. Besides, DTMI is capable of distinctive sensing sulfite with a fast response and a significant Stokes shift as well as with high sensitivity, excellent selectivity, long-term stability of fluorescence signals, and good anti-interference ability. The detection limit (LOD) of DTMI for sulfite within the linear concentration range of 0.5–10 μM is 27.39 nM. More importantly, DTMI has been favorably utilized for detecting sulfite in food samples such as red wine and vermicelli. Based on its low biotoxicity, DTMI has been successfully applied in imaging experiments involving HeLa cells, onion inner epidermal cells, and zebrafish. Therefore, the results show that the presented probe possesses potential sensing activity towards sulfite in complex biological system and food samples.
[Display omitted]
•Turn on fluorescent emission derived from structural alteration from A−π−A to D−π−A.•Rapid and accurate detection of SO2 with high sensitivity and selectivity.•Stable near-infrared fluorescence signal with a nanomolar LOD.•Sniffing sulfite within food samples and living cells.</description><subject>Animals</subject><subject>Bioimaging</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Food Analysis - methods</subject><subject>Food Contamination - analysis</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Limit of Detection</subject><subject>Near-infrared fluorescent probe</subject><subject>Onions - chemistry</subject><subject>Optical Imaging - methods</subject><subject>Real food samples</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Sulfite</subject><subject>Sulfites - analysis</subject><subject>Sulfites - chemistry</subject><subject>Wine - analysis</subject><subject>Zebrafish</subject><issn>0039-9140</issn><issn>1873-3573</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OJCEUhYkZo-3PI8yEpZtq-akqipUxZkZNTNzomlBwaelUFyVQJq58dWm7dTsrEvjOvZwPod-ULCmh7eV6mfWgx6yXjLB6SVlb180BWtBO8Io3gv9CC0K4rCStyTE6SWlNCGGc8CN0zDtJOsrlAn1c46gnb_EIOlZ-dFFHsDjPccRhxG6YQ4RkYDSApxh6wC5EnF8AW8hgsi9QcDjNg_MZsC-RECzWo8U-J6ynafBGf2HlrfdhCKtyMWC_0Ss_rs7QodNDgvP9eYqe__19urmrHh5v72-uHyrDap4r3grhLJdSt1JL2pO2l7StLZOCyKYmUgrKtJPS6tY6agTUnRCMt5SavmscP0UXu7mlxOsMKauNL7WGohDCnBQnZUDHyqiCNjvUxJBSBKemWH4b3xUlauterdXevdq6Vzv3Jfdnv2LuN2B_Ut-yC3C1A6AUffMQVTJ-a9b6WFQqG_x_VnwCZpqYYg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Li, Shufei</creator><creator>Hong, Jiaxin</creator><creator>Xia, Xinyu</creator><creator>Duan, Luying</creator><creator>Yang, Wuying</creator><creator>Xiong, Jianhua</creator><creator>Yin, Xiaoli</creator><creator>Hong, Yanping</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241001</creationdate><title>A rapid near-infrared turn on fluorescence probe for the detection of sulfite in food and its application in biological imaging</title><author>Li, Shufei ; Hong, Jiaxin ; Xia, Xinyu ; Duan, Luying ; Yang, Wuying ; Xiong, Jianhua ; Yin, Xiaoli ; Hong, Yanping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-3677fd399a69a91b06b9164d2970954099712af99da6df1c7e487723611cb85f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Bioimaging</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Food Analysis - methods</topic><topic>Food Contamination - analysis</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Limit of Detection</topic><topic>Near-infrared fluorescent probe</topic><topic>Onions - chemistry</topic><topic>Optical Imaging - methods</topic><topic>Real food samples</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Sulfite</topic><topic>Sulfites - analysis</topic><topic>Sulfites - chemistry</topic><topic>Wine - analysis</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shufei</creatorcontrib><creatorcontrib>Hong, Jiaxin</creatorcontrib><creatorcontrib>Xia, Xinyu</creatorcontrib><creatorcontrib>Duan, Luying</creatorcontrib><creatorcontrib>Yang, Wuying</creatorcontrib><creatorcontrib>Xiong, Jianhua</creatorcontrib><creatorcontrib>Yin, Xiaoli</creatorcontrib><creatorcontrib>Hong, Yanping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shufei</au><au>Hong, Jiaxin</au><au>Xia, Xinyu</au><au>Duan, Luying</au><au>Yang, Wuying</au><au>Xiong, Jianhua</au><au>Yin, Xiaoli</au><au>Hong, Yanping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A rapid near-infrared turn on fluorescence probe for the detection of sulfite in food and its application in biological imaging</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>278</volume><spage>126445</spage><pages>126445-</pages><artnum>126445</artnum><issn>0039-9140</issn><issn>1873-3573</issn><eissn>1873-3573</eissn><abstract>A near-infrared fluorescent “turn on” probe DTMI featuring simple skeleton was constructed easily. It undergoes a structure transformation from an A−π−A to a D−π−A framework towards SO32−. Besides, DTMI is capable of distinctive sensing sulfite with a fast response and a significant Stokes shift as well as with high sensitivity, excellent selectivity, long-term stability of fluorescence signals, and good anti-interference ability. The detection limit (LOD) of DTMI for sulfite within the linear concentration range of 0.5–10 μM is 27.39 nM. More importantly, DTMI has been favorably utilized for detecting sulfite in food samples such as red wine and vermicelli. Based on its low biotoxicity, DTMI has been successfully applied in imaging experiments involving HeLa cells, onion inner epidermal cells, and zebrafish. Therefore, the results show that the presented probe possesses potential sensing activity towards sulfite in complex biological system and food samples.
[Display omitted]
•Turn on fluorescent emission derived from structural alteration from A−π−A to D−π−A.•Rapid and accurate detection of SO2 with high sensitivity and selectivity.•Stable near-infrared fluorescence signal with a nanomolar LOD.•Sniffing sulfite within food samples and living cells.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38908139</pmid><doi>10.1016/j.talanta.2024.126445</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-9140 |
ispartof | Talanta (Oxford), 2024-10, Vol.278, p.126445, Article 126445 |
issn | 0039-9140 1873-3573 1873-3573 |
language | eng |
recordid | cdi_proquest_miscellaneous_3071282540 |
source | Elsevier |
subjects | Animals Bioimaging Fluorescent Dyes - chemistry Food Analysis - methods Food Contamination - analysis HeLa Cells Humans Limit of Detection Near-infrared fluorescent probe Onions - chemistry Optical Imaging - methods Real food samples Spectrometry, Fluorescence - methods Sulfite Sulfites - analysis Sulfites - chemistry Wine - analysis Zebrafish |
title | A rapid near-infrared turn on fluorescence probe for the detection of sulfite in food and its application in biological imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20rapid%20near-infrared%20turn%20on%20fluorescence%20probe%20for%20the%20detection%20of%20sulfite%20in%20food%20and%20its%20application%20in%20biological%20imaging&rft.jtitle=Talanta%20(Oxford)&rft.au=Li,%20Shufei&rft.date=2024-10-01&rft.volume=278&rft.spage=126445&rft.pages=126445-&rft.artnum=126445&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/j.talanta.2024.126445&rft_dat=%3Cproquest_cross%3E3071282540%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c243t-3677fd399a69a91b06b9164d2970954099712af99da6df1c7e487723611cb85f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3071282540&rft_id=info:pmid/38908139&rfr_iscdi=true |