Loading…
Generative AI for precision neuroimaging biomarker development in psychiatry
The explosion of generative AI offers promise for neuroimaging biomarker development in psychiatry, but effective adoption of AI methods requires clarity with respect to specific applications and challenges. These center on dataset sizes required to robustly train AI models along with feature select...
Saved in:
Published in: | Psychiatry research 2024-09, Vol.339, p.115955, Article 115955 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The explosion of generative AI offers promise for neuroimaging biomarker development in psychiatry, but effective adoption of AI methods requires clarity with respect to specific applications and challenges. These center on dataset sizes required to robustly train AI models along with feature selection that capture neural signals relevant to symptom and treatment targets. Here we discuss areas where generative AI could improve quantification of robust and reproducible brain-to-symptom associations to inform precision psychiatry applications, especially in the context of drug discovery. Finally, this communication discusses some challenges that need solutions for generative AI models to advance neuroimaging biomarkers in psychiatry. |
---|---|
ISSN: | 0165-1781 1872-7123 1872-7123 |
DOI: | 10.1016/j.psychres.2024.115955 |