Loading…

Echinacoside activates Nrf2/PPARγ signaling pathway to modulate mitochondrial fusion-fission balance to ameliorate ox-LDL-induced dysfunction of coronary artery endothelial cells

As a cardiovascular disease, coronary heart disease (CHD) is characterized by poor prognosis and increasing morbidity and mortality rates. Echinacoside (ECH) can protect against multiple cardiovascular diseases due to its antioxidant and anti-inflammatory properties. However, the role of ECH in CHD...

Full description

Saved in:
Bibliographic Details
Published in:Naunyn-Schmiedeberg's archives of pharmacology 2024-12, Vol.397 (12), p.9767-9776
Main Authors: Qiu, Xiandi, Feng, Yuxing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a cardiovascular disease, coronary heart disease (CHD) is characterized by poor prognosis and increasing morbidity and mortality rates. Echinacoside (ECH) can protect against multiple cardiovascular diseases due to its antioxidant and anti-inflammatory properties. However, the role of ECH in CHD remains unclear. In ECH-treated human coronary artery endothelial cells (HCAECs), cell viability, NO production, endothelial nitric oxide synthase (eNOS) expression, and angiogenesis ability were detected using cell counting kit-8 (CCK-8) assay, diaminofluorescein-FM diacetate (DAF-FM DA) staining, western blot, and tube formation assay, respectively. The activities of oxidative stress markers were detected using dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay and corresponding assay kits. Cell apoptosis was detected utilizing flow cytometry and caspase3 assay. Western blot was used to detect the expressions of Nrf2/PPARγ signaling pathway- and mitochondrial dynamics-related proteins. Mitochondrial membrane potential and mitochondrial fusion and fission were detected using JC-1 staining and immunofluorescence (IF) assay. In this study, ECH was found to revive the viability, ameliorate the endothelial dysfunction, suppress oxidative stress, and inhibit the apoptosis in ox-LDL-induced HCAECs via activating Nrf2/PPARγ signaling pathway, which were all abolished following the treatment of Nrf2 inhibitor ML385. It was also identified that ECH regulated mitochondrial fusion-fission balance in ox-LDL-induced HCAECs through the activation of Nrf2/PPARγ signaling pathway. In summary, ECH activated Nrf2/PPARγ signaling pathway to regulate mitochondrial fusion-fission balance, thereby improving ox-LDL-induced dysfunction of HCAECs.
ISSN:0028-1298
1432-1912
1432-1912
DOI:10.1007/s00210-024-03233-1