Loading…
Primary production in the bays of the novaya zemlya archipelago (Kara Sea) in the contrasting glacial and non-glacial environmental conditions
Ongoing warming is leading to the accelerated shrinkage of glaciers located on Arctic islands. Consequently, the influence of glacial meltwater on phytoplankton primary production in Arctic bays becomes critically important in an era of warming. This work studies the spatiotemporal variation of prim...
Saved in:
Published in: | Marine environmental research 2024-07, Vol.199, p.106620, Article 106620 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ongoing warming is leading to the accelerated shrinkage of glaciers located on Arctic islands. Consequently, the influence of glacial meltwater on phytoplankton primary production in Arctic bays becomes critically important in an era of warming. This work studies the spatiotemporal variation of primary production and chlorophyll a concentration in the bays along the eastern coast of the Novaya Zemlya archipelago. Data were collected during nine cruises performed from July to October (2013–2022). The effect of underwater photosynthetically available radiation (PAR) and nutrients on primary production was assessed separately for bays influenced by glacial meltwater (glacial bays) and those without such influence (non-glacial bays). The median value of water column-integrated primary production (IPP) for all bays was 38 mgC m−2 d−1, characterizing them as oligotrophic areas. IPP in non-glacial bays was found to be 2.3-fold and 1.4-fold higher than that in glacial bays during summer and autumn, respectively. Underwater PAR was the main abiotic factor determining IPP during the ice-free period. In the entire bays nutrient concentrations were high, exceeding the limiting values for growth and photosynthesis of phytoplankton. It was concluded that the high turbidity from glacial meltwater runoff leads to decreased underwater PAR and, consequently, to a decline in IPP. This study demonstrates that rapid warming could have a negative impact on the productivity of high Arctic bays and their adjacent areas.
•Glacial meltwaters damp primary production (IPP) in the bays of Novaya Zemlya•IPP was higher in the bays without the influence of outlet glaciers•IPP in the bays depended on underwater light conditions rather than nutrients•Rapid warming can negatively impact on IPP in the high Arctic bays |
---|---|
ISSN: | 0141-1136 1879-0291 1879-0291 |
DOI: | 10.1016/j.marenvres.2024.106620 |