Loading…
In situ seeding assay: A novel technique for direct tissue localization of bioactive tau
Abstract Proteins exhibiting prion-like properties are implicated in tauopathies. The prion-like traits of tau influence disease progression and correlate with severity. Techniques to measure tau bioactivity such as RT-QuIC and biosensor cells lack spatial specificity. Therefore, we developed a hist...
Saved in:
Published in: | Journal of neuropathology and experimental neurology 2024-10, Vol.83 (10), p.870-881 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Proteins exhibiting prion-like properties are implicated in tauopathies. The prion-like traits of tau influence disease progression and correlate with severity. Techniques to measure tau bioactivity such as RT-QuIC and biosensor cells lack spatial specificity. Therefore, we developed a histological probe aimed at detecting and localizing bioactive tau in situ. We first induced the recruitment of a tagged probe by bioactive Tau in human brain tissue slices using biosensor cell lysates containing a fluorescent probe. We then enhanced sensitivity and flexibility by designing a recombinant probe with a myc tag. The probe design aimed to replicate the recruitment process seen in prion-like mechanisms based on the cryo-EM structure of tau aggregates in Alzheimer disease (AD). Using this novel probe, we observed selective staining of misfolded tau in pre- and post-synaptic structures within neurofibrillary tangles and neurites, whether or not associated with neuritic plaques. The probe specifically targeted AD-associated bioactive tau and did not recognize bioactive tau from other neurodegenerative diseases. Electron microscopy and immunolabeling further confirmed the identification of fibrillar and non-fibrillar tau. Finally, we established a correlation between quantifying bioactive tau using this technique and gold standard biosensor cells. This technique presents a robust approach for detecting bioactive tau in AD tissues and has potential applications for deciphering mechanisms of tau propagation and degradation pathways. |
---|---|
ISSN: | 0022-3069 1554-6578 1554-6578 |
DOI: | 10.1093/jnen/nlae059 |