Loading…

Antiferromagnetism in GaS monolayer doped with TM-TM atom pairs (TM = V, Cr, Mn, and Fe)

In this work, structural modification at Ga sites of the gallium sulfide (GaS) monolayer is explored to create new two-dimensional (2D) materials towards spintronic applications. GaS monolayer is a non-magnetic indirect-gap semiconductor material with an energy gap of 2.38 (3.27) eV as calculated us...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2024-07, Vol.26 (27), p.18657-18666
Main Authors: Hoat, D. M, Tien, Nguyen Thanh, Nguyen, Duy Khanh, Guerrero-Sanchez, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, structural modification at Ga sites of the gallium sulfide (GaS) monolayer is explored to create new two-dimensional (2D) materials towards spintronic applications. GaS monolayer is a non-magnetic indirect-gap semiconductor material with an energy gap of 2.38 (3.27) eV as calculated using the PBE(HSE06) functional. Half-metallicity is induced in this 2D material by creating a single Ga vacancy, where S atoms around the defect site produce mainly the magnetic properties with a total magnetic moment of 1.00 μ B . In contrast, the non-magnetic nature is preserved under the effects of a pair of Ga vacancies, which metallize the monolayer. V, Mn, and Fe doping leads to the emergence of the diluted magnetic semiconductor nature, while doping with Cr creates a new 2D half-metallic material from the GaS monolayer. In these cases, total magnetic moments between 2.00 and 5.00 μ B are obtained and the 3d orbital of transition metal (TM) impurities mainly induces the system magnetism. In addition, the effects of doping with a pair of TM (pTM) atoms are also investigated, in which the antiferromagnetism is found to be stable rather than the ferromagnetism to follow the Pauli exclusion principle. Significant magnetization of the GaS monolayer is also achieved with zero total magnetic moment because of the structural mirror-symmetry. pV-, pMn-, and pFe-doped systems are antiferromagnetic semiconductor materials with energy gaps of 1.06, 1.90, and 1.84 eV, respectively. Meanwhile, the monolayer is metallized by doping with a pCr pair. The results presented herein indicate that the defective and doped GaS monolayers are prospective 2D candidates for spintronic applications - which are hindered for the pristine GaS monolayer because of the absence of intrinsic magnetism. Antiferromagnetism in GaS monolayer doped with a pair of transition metal atoms.
ISSN:1463-9076
1463-9084
1463-9084
DOI:10.1039/d4cp01119h