Loading…

Microporous Materials in Polymer Electrolytes: The Merit of Order

Solid‐state batteries (SSBs) have garnered significant attention in the critical field of sustainable energy storage due to their potential benefits in safety, energy density, and cycle life. The large‐scale, cost‐effective production of SSBs necessitates the development of high‐performance solid‐st...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-08, Vol.36 (35), p.e2405079-n/a
Main Authors: Xu, Ming, Li, Danyang, Feng, Yuhe, Yuan, Yu, Wu, Yutong, Zhao, Hongyang, Kumar, R. Vasant, Feng, Guodong, Xi, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2589-4f03ccb6c6da3c8418f0ef522edf52af56902eb9aca168f2a71bd33648a99f223
container_end_page n/a
container_issue 35
container_start_page e2405079
container_title Advanced materials (Weinheim)
container_volume 36
creator Xu, Ming
Li, Danyang
Feng, Yuhe
Yuan, Yu
Wu, Yutong
Zhao, Hongyang
Kumar, R. Vasant
Feng, Guodong
Xi, Kai
description Solid‐state batteries (SSBs) have garnered significant attention in the critical field of sustainable energy storage due to their potential benefits in safety, energy density, and cycle life. The large‐scale, cost‐effective production of SSBs necessitates the development of high‐performance solid‐state electrolytes. However, the manufacturing of SSBs relies heavily on the advancement of suitable solid‐state electrolytes. Composite polymer electrolytes (CPEs), which combine the advantages of ordered microporous materials (OMMs) and polymer electrolytes, meet the requirements for high ionic conductivity/transference number, stability with respect to electrodes, compatibility with established manufacturing processes, and cost‐effectiveness, making them particularly well‐suited for mass production of SSBs. This review delineates how structural ordering dictates the fundamental physicochemical properties of OMMs, including ion transport, thermal transfer, and mechanical stability. The applications of prominent OMMs are critically examined, such as metal–organic frameworks, covalent organic frameworks, and zeolites, in CPEs, highlighting how structural ordering facilitates the fulfillment of property requirements. Finally, an outlook on the field is provided, exploring how the properties of CPEs can be enhanced through the dimensional design of OMMs, and the importance of uncovering the underlying “feature‐function” mechanisms of various CPE types is underscored. The manufacturing of solid‐state batteries depends on the development of suitable solid‐state electrolytes. One potential solution is to develop composite polymer electrolytes (CPEs) that combine the strengths of inorganic fillers and polymer electrolytes. The recent advances made in the development of CPE chemistry and technology enabled by ordered microporous materials, including metal–organic frameworks, covalent organic frameworks, and zeolites, are summarized.
doi_str_mv 10.1002/adma.202405079
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3072798664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072798664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2589-4f03ccb6c6da3c8418f0ef522edf52af56902eb9aca168f2a71bd33648a99f223</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK1ePUrAi5fU2U2y2fFWav2Ahnqo57DZ7GJK0tTdBOm_d0trBS9eZhh45uXlIeSawpgCsHtZNnLMgMWQQIonZEgTRsMYMDklQ8AoCZHHYkAunFsBAHLg52QQCWQMUQzJJKuUbTetbXsXZLLTtpK1C6p18NbW20bbYFZr1Vl_dNo9BMsPHWQe6oLWBAtbantJzox_0VeHPSLvT7Pl9CWcL55fp5N5qFgiMIwNREoVXPFSRkrEVBjQJmFMl35Kk3AEpguUSlIuDJMpLcoo8uUlomEsGpG7fe7Gtp-9dl3eVE7pupZr7cvnEaQsRcF57NHbP-iq7e3at_MUpoIi46mnxnvKC3DOapNvbNVIu80p5Du5-U5ufpTrH24OsX3R6PKI_9j0AO6Br6rW23_i8sljNvkN_wZ1q4Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097819267</pqid></control><display><type>article</type><title>Microporous Materials in Polymer Electrolytes: The Merit of Order</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Xu, Ming ; Li, Danyang ; Feng, Yuhe ; Yuan, Yu ; Wu, Yutong ; Zhao, Hongyang ; Kumar, R. Vasant ; Feng, Guodong ; Xi, Kai</creator><creatorcontrib>Xu, Ming ; Li, Danyang ; Feng, Yuhe ; Yuan, Yu ; Wu, Yutong ; Zhao, Hongyang ; Kumar, R. Vasant ; Feng, Guodong ; Xi, Kai</creatorcontrib><description>Solid‐state batteries (SSBs) have garnered significant attention in the critical field of sustainable energy storage due to their potential benefits in safety, energy density, and cycle life. The large‐scale, cost‐effective production of SSBs necessitates the development of high‐performance solid‐state electrolytes. However, the manufacturing of SSBs relies heavily on the advancement of suitable solid‐state electrolytes. Composite polymer electrolytes (CPEs), which combine the advantages of ordered microporous materials (OMMs) and polymer electrolytes, meet the requirements for high ionic conductivity/transference number, stability with respect to electrodes, compatibility with established manufacturing processes, and cost‐effectiveness, making them particularly well‐suited for mass production of SSBs. This review delineates how structural ordering dictates the fundamental physicochemical properties of OMMs, including ion transport, thermal transfer, and mechanical stability. The applications of prominent OMMs are critically examined, such as metal–organic frameworks, covalent organic frameworks, and zeolites, in CPEs, highlighting how structural ordering facilitates the fulfillment of property requirements. Finally, an outlook on the field is provided, exploring how the properties of CPEs can be enhanced through the dimensional design of OMMs, and the importance of uncovering the underlying “feature‐function” mechanisms of various CPE types is underscored. The manufacturing of solid‐state batteries depends on the development of suitable solid‐state electrolytes. One potential solution is to develop composite polymer electrolytes (CPEs) that combine the strengths of inorganic fillers and polymer electrolytes. The recent advances made in the development of CPE chemistry and technology enabled by ordered microporous materials, including metal–organic frameworks, covalent organic frameworks, and zeolites, are summarized.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202405079</identifier><identifier>PMID: 38922998</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>composite polymer electrolyte ; Critical field (superconductivity) ; Effectiveness ; Electrolytes ; Ion currents ; Ion transport ; Manufacturing ; Mass production ; Metal-organic frameworks ; Molten salt electrolytes ; ordered microporous materials ; Polymers ; Solid electrolytes ; solid‐state Li‐ion batteries ; Stability</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (35), p.e2405079-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2589-4f03ccb6c6da3c8418f0ef522edf52af56902eb9aca168f2a71bd33648a99f223</cites><orcidid>0000-0001-8774-9599 ; 0000-0003-0508-7910 ; 0000-0002-1457-9469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38922998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Feng, Yuhe</creatorcontrib><creatorcontrib>Yuan, Yu</creatorcontrib><creatorcontrib>Wu, Yutong</creatorcontrib><creatorcontrib>Zhao, Hongyang</creatorcontrib><creatorcontrib>Kumar, R. Vasant</creatorcontrib><creatorcontrib>Feng, Guodong</creatorcontrib><creatorcontrib>Xi, Kai</creatorcontrib><title>Microporous Materials in Polymer Electrolytes: The Merit of Order</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Solid‐state batteries (SSBs) have garnered significant attention in the critical field of sustainable energy storage due to their potential benefits in safety, energy density, and cycle life. The large‐scale, cost‐effective production of SSBs necessitates the development of high‐performance solid‐state electrolytes. However, the manufacturing of SSBs relies heavily on the advancement of suitable solid‐state electrolytes. Composite polymer electrolytes (CPEs), which combine the advantages of ordered microporous materials (OMMs) and polymer electrolytes, meet the requirements for high ionic conductivity/transference number, stability with respect to electrodes, compatibility with established manufacturing processes, and cost‐effectiveness, making them particularly well‐suited for mass production of SSBs. This review delineates how structural ordering dictates the fundamental physicochemical properties of OMMs, including ion transport, thermal transfer, and mechanical stability. The applications of prominent OMMs are critically examined, such as metal–organic frameworks, covalent organic frameworks, and zeolites, in CPEs, highlighting how structural ordering facilitates the fulfillment of property requirements. Finally, an outlook on the field is provided, exploring how the properties of CPEs can be enhanced through the dimensional design of OMMs, and the importance of uncovering the underlying “feature‐function” mechanisms of various CPE types is underscored. The manufacturing of solid‐state batteries depends on the development of suitable solid‐state electrolytes. One potential solution is to develop composite polymer electrolytes (CPEs) that combine the strengths of inorganic fillers and polymer electrolytes. The recent advances made in the development of CPE chemistry and technology enabled by ordered microporous materials, including metal–organic frameworks, covalent organic frameworks, and zeolites, are summarized.</description><subject>composite polymer electrolyte</subject><subject>Critical field (superconductivity)</subject><subject>Effectiveness</subject><subject>Electrolytes</subject><subject>Ion currents</subject><subject>Ion transport</subject><subject>Manufacturing</subject><subject>Mass production</subject><subject>Metal-organic frameworks</subject><subject>Molten salt electrolytes</subject><subject>ordered microporous materials</subject><subject>Polymers</subject><subject>Solid electrolytes</subject><subject>solid‐state Li‐ion batteries</subject><subject>Stability</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRbK1ePUrAi5fU2U2y2fFWav2Ahnqo57DZ7GJK0tTdBOm_d0trBS9eZhh45uXlIeSawpgCsHtZNnLMgMWQQIonZEgTRsMYMDklQ8AoCZHHYkAunFsBAHLg52QQCWQMUQzJJKuUbTetbXsXZLLTtpK1C6p18NbW20bbYFZr1Vl_dNo9BMsPHWQe6oLWBAtbantJzox_0VeHPSLvT7Pl9CWcL55fp5N5qFgiMIwNREoVXPFSRkrEVBjQJmFMl35Kk3AEpguUSlIuDJMpLcoo8uUlomEsGpG7fe7Gtp-9dl3eVE7pupZr7cvnEaQsRcF57NHbP-iq7e3at_MUpoIi46mnxnvKC3DOapNvbNVIu80p5Du5-U5ufpTrH24OsX3R6PKI_9j0AO6Br6rW23_i8sljNvkN_wZ1q4Tw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Xu, Ming</creator><creator>Li, Danyang</creator><creator>Feng, Yuhe</creator><creator>Yuan, Yu</creator><creator>Wu, Yutong</creator><creator>Zhao, Hongyang</creator><creator>Kumar, R. Vasant</creator><creator>Feng, Guodong</creator><creator>Xi, Kai</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8774-9599</orcidid><orcidid>https://orcid.org/0000-0003-0508-7910</orcidid><orcidid>https://orcid.org/0000-0002-1457-9469</orcidid></search><sort><creationdate>20240801</creationdate><title>Microporous Materials in Polymer Electrolytes: The Merit of Order</title><author>Xu, Ming ; Li, Danyang ; Feng, Yuhe ; Yuan, Yu ; Wu, Yutong ; Zhao, Hongyang ; Kumar, R. Vasant ; Feng, Guodong ; Xi, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2589-4f03ccb6c6da3c8418f0ef522edf52af56902eb9aca168f2a71bd33648a99f223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>composite polymer electrolyte</topic><topic>Critical field (superconductivity)</topic><topic>Effectiveness</topic><topic>Electrolytes</topic><topic>Ion currents</topic><topic>Ion transport</topic><topic>Manufacturing</topic><topic>Mass production</topic><topic>Metal-organic frameworks</topic><topic>Molten salt electrolytes</topic><topic>ordered microporous materials</topic><topic>Polymers</topic><topic>Solid electrolytes</topic><topic>solid‐state Li‐ion batteries</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Feng, Yuhe</creatorcontrib><creatorcontrib>Yuan, Yu</creatorcontrib><creatorcontrib>Wu, Yutong</creatorcontrib><creatorcontrib>Zhao, Hongyang</creatorcontrib><creatorcontrib>Kumar, R. Vasant</creatorcontrib><creatorcontrib>Feng, Guodong</creatorcontrib><creatorcontrib>Xi, Kai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ming</au><au>Li, Danyang</au><au>Feng, Yuhe</au><au>Yuan, Yu</au><au>Wu, Yutong</au><au>Zhao, Hongyang</au><au>Kumar, R. Vasant</au><au>Feng, Guodong</au><au>Xi, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microporous Materials in Polymer Electrolytes: The Merit of Order</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>35</issue><spage>e2405079</spage><epage>n/a</epage><pages>e2405079-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Solid‐state batteries (SSBs) have garnered significant attention in the critical field of sustainable energy storage due to their potential benefits in safety, energy density, and cycle life. The large‐scale, cost‐effective production of SSBs necessitates the development of high‐performance solid‐state electrolytes. However, the manufacturing of SSBs relies heavily on the advancement of suitable solid‐state electrolytes. Composite polymer electrolytes (CPEs), which combine the advantages of ordered microporous materials (OMMs) and polymer electrolytes, meet the requirements for high ionic conductivity/transference number, stability with respect to electrodes, compatibility with established manufacturing processes, and cost‐effectiveness, making them particularly well‐suited for mass production of SSBs. This review delineates how structural ordering dictates the fundamental physicochemical properties of OMMs, including ion transport, thermal transfer, and mechanical stability. The applications of prominent OMMs are critically examined, such as metal–organic frameworks, covalent organic frameworks, and zeolites, in CPEs, highlighting how structural ordering facilitates the fulfillment of property requirements. Finally, an outlook on the field is provided, exploring how the properties of CPEs can be enhanced through the dimensional design of OMMs, and the importance of uncovering the underlying “feature‐function” mechanisms of various CPE types is underscored. The manufacturing of solid‐state batteries depends on the development of suitable solid‐state electrolytes. One potential solution is to develop composite polymer electrolytes (CPEs) that combine the strengths of inorganic fillers and polymer electrolytes. The recent advances made in the development of CPE chemistry and technology enabled by ordered microporous materials, including metal–organic frameworks, covalent organic frameworks, and zeolites, are summarized.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38922998</pmid><doi>10.1002/adma.202405079</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8774-9599</orcidid><orcidid>https://orcid.org/0000-0003-0508-7910</orcidid><orcidid>https://orcid.org/0000-0002-1457-9469</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (35), p.e2405079-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3072798664
source Wiley-Blackwell Read & Publish Collection
subjects composite polymer electrolyte
Critical field (superconductivity)
Effectiveness
Electrolytes
Ion currents
Ion transport
Manufacturing
Mass production
Metal-organic frameworks
Molten salt electrolytes
ordered microporous materials
Polymers
Solid electrolytes
solid‐state Li‐ion batteries
Stability
title Microporous Materials in Polymer Electrolytes: The Merit of Order
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microporous%20Materials%20in%20Polymer%20Electrolytes:%20The%20Merit%20of%20Order&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xu,%20Ming&rft.date=2024-08-01&rft.volume=36&rft.issue=35&rft.spage=e2405079&rft.epage=n/a&rft.pages=e2405079-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202405079&rft_dat=%3Cproquest_cross%3E3072798664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2589-4f03ccb6c6da3c8418f0ef522edf52af56902eb9aca168f2a71bd33648a99f223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097819267&rft_id=info:pmid/38922998&rfr_iscdi=true