Loading…
Potential to reduce methane production of using cultivated seaweeds supplementation to reshape the community structure of rumen microorganisms
Methane is a short-lived greenhouse gas but has a far greater warming effect than carbon dioxide. At the same time, the livestock sector serves as a large contributor to global emissions of anthropogenic methane. Herein, this work aimed to use cultivated seaweed supplementation to reduce methane emi...
Saved in:
Published in: | Environmental research 2024-10, Vol.259, p.119458, Article 119458 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Methane is a short-lived greenhouse gas but has a far greater warming effect than carbon dioxide. At the same time, the livestock sector serves as a large contributor to global emissions of anthropogenic methane. Herein, this work aimed to use cultivated seaweed supplementation to reduce methane emissions and investigate the potential influencing mechanism. To evaluate the feasibility, two cultivated seaweeds, Laminaria japonica Aresch, and Porphyra tenera, along with the enzymatic hydrolysates derived from L. japonica, underwent in vitro trials, and they were both added into corn silage feed (CSF) with different concentrations (1%, 5%, and 10% of CSF) for methane reduction evaluation. The results indicated that >75% and 50% reductions in methane production were observed for the seaweeds and seaweed enzymatic hydrolysates in 9- and 30-day, respectively. Combined high-throughput sequencing and multivariate analysis revealed that supplementation with seaweed and seaweed enzymatic hydrolysates had a notable impact on the prokaryotic community structure. Mantel tests further revealed that significant correlations between the prokaryotic community and methane accumulation (PÂ |
---|---|
ISSN: | 0013-9351 1096-0953 1096-0953 |
DOI: | 10.1016/j.envres.2024.119458 |