Loading…
Evaluating the Robustness of Parameter Estimates in Cognitive Models: A Meta-Analytic Review of Multinomial Processing Tree Models Across the Multiverse of Estimation Methods
Researchers have become increasingly aware that data-analysis decisions affect results. Here, we examine this issue systematically for multinomial processing tree (MPT) models, a popular class of cognitive models for categorical data. Specifically, we examine the robustness of MPT model parameter es...
Saved in:
Published in: | Psychological bulletin 2024-08, Vol.150 (8), p.965-1003 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Researchers have become increasingly aware that data-analysis decisions affect results. Here, we examine this issue systematically for multinomial processing tree (MPT) models, a popular class of cognitive models for categorical data. Specifically, we examine the robustness of MPT model parameter estimates that arise from two important decisions: the level of data aggregation (complete-pooling, no-pooling, or partial-pooling) and the statistical framework (frequentist or Bayesian). These decisions span a multiverse of estimation methods. We synthesized the data from 13,956 participants (164 published data sets) with a meta-analytic strategy and analyzed the magnitude of divergence between estimation methods for the parameters of nine popular MPT models in psychology (e.g., process-dissociation, source monitoring). We further examined moderators as potential sources of divergence. We found that the absolute divergence between estimation methods was small on average ( |
---|---|
ISSN: | 0033-2909 1939-1455 1939-1455 |
DOI: | 10.1037/bul0000434 |