Loading…

Biotransformation of ginsenoside compound K using β-glucosidase in deep eutectic solvents

Ginsenoside compound K (CK) holds significant potential for application in the pharmaceutical industry, which exhibits numerous pharmacological activity such as cardioprotective and antidiabetic. However, the difficult separation technique and limited yield of CK hinder its widespread use. The study...

Full description

Saved in:
Bibliographic Details
Published in:Bioprocess and biosystems engineering 2024-10, Vol.47 (10), p.1647-1657
Main Authors: Hong, Yinan, Shi, Yue, Fan, Yurou, Pan, Hong, Yao, Xiangyu, Xie, Yu, Wang, Xiaojun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ginsenoside compound K (CK) holds significant potential for application in the pharmaceutical industry, which exhibits numerous pharmacological activity such as cardioprotective and antidiabetic. However, the difficult separation technique and limited yield of CK hinder its widespread use. The study investigated the process of converting ginsenoside CK using β-glucosidase. It aimed to determine the specific site where the enzyme binds and the most favorable arrangement of the enzyme. Molecular docking was also employed to determine the interaction between β-glucosidase and ginsenosides, indicating a strong and spontaneous contact force between them. The effectiveness of the conversion process was further improved using a “green” deep eutectic solvent (DES). A univariate experimental design was used to determine the composition of DES and the optimal hydrolysis conditions for β-glucosidase to convert ginsenoside Rb1 into ginsenoside CK. The employment of β-glucosidase enzymatic hydrolysis in the synthesis of rare ginsenoside CK applying the environmentally friendly solvent DES is not only viable and effective but also appropriate for industrial use. The characterization methods confirmed that DES did not disrupt the structure and conformation of β-glucosidase. In ChCl:EG = 2:1 (30%, v/v), pH 5.0 of DES buffer, reaction temperature 50 ℃, enzyme substrate mass ratio 1:1, after 36 h of reaction, the CK yield was 1.24 times that in acetate buffer, which can reach 86.2%. In this study, the process of using β-glucosidase enzymatic hydrolysis and producing rare ginsenoside CK in green solvent DES is feasible, efficient and suitable for industrial production and application.
ISSN:1615-7591
1615-7605
1615-7605
DOI:10.1007/s00449-024-03056-7