Loading…
Bayesian analysis of 1D 1H-NMR spectra
Extracting spin system parameters from 1D high resolution 1H-NMR spectra can be an intricate task requiring sophisticate methods. With a few exceptions methods to perform such a total line shape analysis commonly rely on local optimization techniques which for increasing complexity of the underlying...
Saved in:
Published in: | Journal of magnetic resonance (1997) 2024-07, Vol.364, p.107723, Article 107723 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 107723 |
container_title | Journal of magnetic resonance (1997) |
container_volume | 364 |
creator | De Lorenzi, Flavio Weinmann, Tom Bruderer, Simon Heitmann, Björn Henrici, Andreas Stingelin, Simon |
description | Extracting spin system parameters from 1D high resolution 1H-NMR spectra can be an intricate task requiring sophisticate methods. With a few exceptions methods to perform such a total line shape analysis commonly rely on local optimization techniques which for increasing complexity of the underlying spin system tend to reveal local solutions. In this work we propose a full Bayesian modeling approach based on a quantum mechanical model of the spin system. The Bayesian formalism provides a global optimization strategy which allows to efficiently include prior knowledge about the spin system or to incorporate additional constraints concerning the parameters of interest. The proposed algorithm has been tested on synthetic and real 1D 1H-NMR data for various spin systems with increasing complexity. The results show that the Bayesian algorithm provides accurate estimates even for complex spectra with many overlapping regions, and that it can cope with symmetry induced local minima. By providing an unbiased estimate of the model evidence the proposed algorithm furthermore offers a way to discriminate between different spin system candidates.
[Display omitted]
•Bayesian analysis of 1D NMR spectra.•Total line shape analysis.•Quantum mechanical spectra prediction.•Inference of chemical shifts, coupling constants and line widths.•Selection of best explaining spin system based on model evidence. |
doi_str_mv | 10.1016/j.jmr.2024.107723 |
format | article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073231381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780724001071</els_id><sourcerecordid>3073231381</sourcerecordid><originalsourceid>FETCH-LOGICAL-e851-46e015b40ece88bf766583f5bd81c3b01b507ce1bb8da9491d10ab4c16f279033</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRsFZ_gLecxEvi-2azH8GT1o8KVUF6X3Y3b2BDmtRsK_TfmxpPMwPDMDyMXSNkCCjvmqzZDFkOeTFmpXJ-wmYIpUxBC3n65yFVGtQ5u4ixAUAUCmbs5tEeKAbbJbaz7SGGmPR1gk8JLtOP968kbsnvBnvJzmrbRrr61zlbvzyvF8t09fn6tnhYpaQFpoUkQOEKIE9au1pJKTSvhas0eu4AnQDlCZ3TlS2LEisE6wqPss5VCZzP2e00ux367z3FndmE6KltbUf9PhoOiuccucaxej9VabzzE2gw0QfqPFVhGC-bqg8GwRzhmMaMcMwRjpng8F_r4FYt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073231381</pqid></control><display><type>article</type><title>Bayesian analysis of 1D 1H-NMR spectra</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>De Lorenzi, Flavio ; Weinmann, Tom ; Bruderer, Simon ; Heitmann, Björn ; Henrici, Andreas ; Stingelin, Simon</creator><creatorcontrib>De Lorenzi, Flavio ; Weinmann, Tom ; Bruderer, Simon ; Heitmann, Björn ; Henrici, Andreas ; Stingelin, Simon</creatorcontrib><description>Extracting spin system parameters from 1D high resolution 1H-NMR spectra can be an intricate task requiring sophisticate methods. With a few exceptions methods to perform such a total line shape analysis commonly rely on local optimization techniques which for increasing complexity of the underlying spin system tend to reveal local solutions. In this work we propose a full Bayesian modeling approach based on a quantum mechanical model of the spin system. The Bayesian formalism provides a global optimization strategy which allows to efficiently include prior knowledge about the spin system or to incorporate additional constraints concerning the parameters of interest. The proposed algorithm has been tested on synthetic and real 1D 1H-NMR data for various spin systems with increasing complexity. The results show that the Bayesian algorithm provides accurate estimates even for complex spectra with many overlapping regions, and that it can cope with symmetry induced local minima. By providing an unbiased estimate of the model evidence the proposed algorithm furthermore offers a way to discriminate between different spin system candidates.
[Display omitted]
•Bayesian analysis of 1D NMR spectra.•Total line shape analysis.•Quantum mechanical spectra prediction.•Inference of chemical shifts, coupling constants and line widths.•Selection of best explaining spin system based on model evidence.</description><identifier>ISSN: 1090-7807</identifier><identifier>ISSN: 1096-0856</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2024.107723</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Bayesian inference ; Chemical shifts ; Machine learning ; NMR spectroscopy ; Quantum spin dynamics ; Scalar couplings ; Spectra simulation ; Total line shape analysis</subject><ispartof>Journal of magnetic resonance (1997), 2024-07, Vol.364, p.107723, Article 107723</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>De Lorenzi, Flavio</creatorcontrib><creatorcontrib>Weinmann, Tom</creatorcontrib><creatorcontrib>Bruderer, Simon</creatorcontrib><creatorcontrib>Heitmann, Björn</creatorcontrib><creatorcontrib>Henrici, Andreas</creatorcontrib><creatorcontrib>Stingelin, Simon</creatorcontrib><title>Bayesian analysis of 1D 1H-NMR spectra</title><title>Journal of magnetic resonance (1997)</title><description>Extracting spin system parameters from 1D high resolution 1H-NMR spectra can be an intricate task requiring sophisticate methods. With a few exceptions methods to perform such a total line shape analysis commonly rely on local optimization techniques which for increasing complexity of the underlying spin system tend to reveal local solutions. In this work we propose a full Bayesian modeling approach based on a quantum mechanical model of the spin system. The Bayesian formalism provides a global optimization strategy which allows to efficiently include prior knowledge about the spin system or to incorporate additional constraints concerning the parameters of interest. The proposed algorithm has been tested on synthetic and real 1D 1H-NMR data for various spin systems with increasing complexity. The results show that the Bayesian algorithm provides accurate estimates even for complex spectra with many overlapping regions, and that it can cope with symmetry induced local minima. By providing an unbiased estimate of the model evidence the proposed algorithm furthermore offers a way to discriminate between different spin system candidates.
[Display omitted]
•Bayesian analysis of 1D NMR spectra.•Total line shape analysis.•Quantum mechanical spectra prediction.•Inference of chemical shifts, coupling constants and line widths.•Selection of best explaining spin system based on model evidence.</description><subject>Bayesian inference</subject><subject>Chemical shifts</subject><subject>Machine learning</subject><subject>NMR spectroscopy</subject><subject>Quantum spin dynamics</subject><subject>Scalar couplings</subject><subject>Spectra simulation</subject><subject>Total line shape analysis</subject><issn>1090-7807</issn><issn>1096-0856</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1Lw0AYhBdRsFZ_gLecxEvi-2azH8GT1o8KVUF6X3Y3b2BDmtRsK_TfmxpPMwPDMDyMXSNkCCjvmqzZDFkOeTFmpXJ-wmYIpUxBC3n65yFVGtQ5u4ixAUAUCmbs5tEeKAbbJbaz7SGGmPR1gk8JLtOP968kbsnvBnvJzmrbRrr61zlbvzyvF8t09fn6tnhYpaQFpoUkQOEKIE9au1pJKTSvhas0eu4AnQDlCZ3TlS2LEisE6wqPss5VCZzP2e00ux367z3FndmE6KltbUf9PhoOiuccucaxej9VabzzE2gw0QfqPFVhGC-bqg8GwRzhmMaMcMwRjpng8F_r4FYt</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>De Lorenzi, Flavio</creator><creator>Weinmann, Tom</creator><creator>Bruderer, Simon</creator><creator>Heitmann, Björn</creator><creator>Henrici, Andreas</creator><creator>Stingelin, Simon</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>7X8</scope></search><sort><creationdate>202407</creationdate><title>Bayesian analysis of 1D 1H-NMR spectra</title><author>De Lorenzi, Flavio ; Weinmann, Tom ; Bruderer, Simon ; Heitmann, Björn ; Henrici, Andreas ; Stingelin, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e851-46e015b40ece88bf766583f5bd81c3b01b507ce1bb8da9491d10ab4c16f279033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian inference</topic><topic>Chemical shifts</topic><topic>Machine learning</topic><topic>NMR spectroscopy</topic><topic>Quantum spin dynamics</topic><topic>Scalar couplings</topic><topic>Spectra simulation</topic><topic>Total line shape analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Lorenzi, Flavio</creatorcontrib><creatorcontrib>Weinmann, Tom</creatorcontrib><creatorcontrib>Bruderer, Simon</creatorcontrib><creatorcontrib>Heitmann, Björn</creatorcontrib><creatorcontrib>Henrici, Andreas</creatorcontrib><creatorcontrib>Stingelin, Simon</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Lorenzi, Flavio</au><au>Weinmann, Tom</au><au>Bruderer, Simon</au><au>Heitmann, Björn</au><au>Henrici, Andreas</au><au>Stingelin, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis of 1D 1H-NMR spectra</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><date>2024-07</date><risdate>2024</risdate><volume>364</volume><spage>107723</spage><pages>107723-</pages><artnum>107723</artnum><issn>1090-7807</issn><issn>1096-0856</issn><eissn>1096-0856</eissn><abstract>Extracting spin system parameters from 1D high resolution 1H-NMR spectra can be an intricate task requiring sophisticate methods. With a few exceptions methods to perform such a total line shape analysis commonly rely on local optimization techniques which for increasing complexity of the underlying spin system tend to reveal local solutions. In this work we propose a full Bayesian modeling approach based on a quantum mechanical model of the spin system. The Bayesian formalism provides a global optimization strategy which allows to efficiently include prior knowledge about the spin system or to incorporate additional constraints concerning the parameters of interest. The proposed algorithm has been tested on synthetic and real 1D 1H-NMR data for various spin systems with increasing complexity. The results show that the Bayesian algorithm provides accurate estimates even for complex spectra with many overlapping regions, and that it can cope with symmetry induced local minima. By providing an unbiased estimate of the model evidence the proposed algorithm furthermore offers a way to discriminate between different spin system candidates.
[Display omitted]
•Bayesian analysis of 1D NMR spectra.•Total line shape analysis.•Quantum mechanical spectra prediction.•Inference of chemical shifts, coupling constants and line widths.•Selection of best explaining spin system based on model evidence.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmr.2024.107723</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1090-7807 |
ispartof | Journal of magnetic resonance (1997), 2024-07, Vol.364, p.107723, Article 107723 |
issn | 1090-7807 1096-0856 1096-0856 |
language | eng |
recordid | cdi_proquest_miscellaneous_3073231381 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Bayesian inference Chemical shifts Machine learning NMR spectroscopy Quantum spin dynamics Scalar couplings Spectra simulation Total line shape analysis |
title | Bayesian analysis of 1D 1H-NMR spectra |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20of%201D%201H-NMR%20spectra&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=De%20Lorenzi,%20Flavio&rft.date=2024-07&rft.volume=364&rft.spage=107723&rft.pages=107723-&rft.artnum=107723&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2024.107723&rft_dat=%3Cproquest_elsev%3E3073231381%3C/proquest_elsev%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e851-46e015b40ece88bf766583f5bd81c3b01b507ce1bb8da9491d10ab4c16f279033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073231381&rft_id=info:pmid/&rfr_iscdi=true |