Loading…

Bayesian analysis of 1D 1H-NMR spectra

Extracting spin system parameters from 1D high resolution 1H-NMR spectra can be an intricate task requiring sophisticate methods. With a few exceptions methods to perform such a total line shape analysis commonly rely on local optimization techniques which for increasing complexity of the underlying...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance (1997) 2024-07, Vol.364, p.107723, Article 107723
Main Authors: De Lorenzi, Flavio, Weinmann, Tom, Bruderer, Simon, Heitmann, Björn, Henrici, Andreas, Stingelin, Simon
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 107723
container_title Journal of magnetic resonance (1997)
container_volume 364
creator De Lorenzi, Flavio
Weinmann, Tom
Bruderer, Simon
Heitmann, Björn
Henrici, Andreas
Stingelin, Simon
description Extracting spin system parameters from 1D high resolution 1H-NMR spectra can be an intricate task requiring sophisticate methods. With a few exceptions methods to perform such a total line shape analysis commonly rely on local optimization techniques which for increasing complexity of the underlying spin system tend to reveal local solutions. In this work we propose a full Bayesian modeling approach based on a quantum mechanical model of the spin system. The Bayesian formalism provides a global optimization strategy which allows to efficiently include prior knowledge about the spin system or to incorporate additional constraints concerning the parameters of interest. The proposed algorithm has been tested on synthetic and real 1D 1H-NMR data for various spin systems with increasing complexity. The results show that the Bayesian algorithm provides accurate estimates even for complex spectra with many overlapping regions, and that it can cope with symmetry induced local minima. By providing an unbiased estimate of the model evidence the proposed algorithm furthermore offers a way to discriminate between different spin system candidates. [Display omitted] •Bayesian analysis of 1D NMR spectra.•Total line shape analysis.•Quantum mechanical spectra prediction.•Inference of chemical shifts, coupling constants and line widths.•Selection of best explaining spin system based on model evidence.
doi_str_mv 10.1016/j.jmr.2024.107723
format article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073231381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780724001071</els_id><sourcerecordid>3073231381</sourcerecordid><originalsourceid>FETCH-LOGICAL-e851-46e015b40ece88bf766583f5bd81c3b01b507ce1bb8da9491d10ab4c16f279033</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRsFZ_gLecxEvi-2azH8GT1o8KVUF6X3Y3b2BDmtRsK_TfmxpPMwPDMDyMXSNkCCjvmqzZDFkOeTFmpXJ-wmYIpUxBC3n65yFVGtQ5u4ixAUAUCmbs5tEeKAbbJbaz7SGGmPR1gk8JLtOP968kbsnvBnvJzmrbRrr61zlbvzyvF8t09fn6tnhYpaQFpoUkQOEKIE9au1pJKTSvhas0eu4AnQDlCZ3TlS2LEisE6wqPss5VCZzP2e00ux367z3FndmE6KltbUf9PhoOiuccucaxej9VabzzE2gw0QfqPFVhGC-bqg8GwRzhmMaMcMwRjpng8F_r4FYt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073231381</pqid></control><display><type>article</type><title>Bayesian analysis of 1D 1H-NMR spectra</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>De Lorenzi, Flavio ; Weinmann, Tom ; Bruderer, Simon ; Heitmann, Björn ; Henrici, Andreas ; Stingelin, Simon</creator><creatorcontrib>De Lorenzi, Flavio ; Weinmann, Tom ; Bruderer, Simon ; Heitmann, Björn ; Henrici, Andreas ; Stingelin, Simon</creatorcontrib><description>Extracting spin system parameters from 1D high resolution 1H-NMR spectra can be an intricate task requiring sophisticate methods. With a few exceptions methods to perform such a total line shape analysis commonly rely on local optimization techniques which for increasing complexity of the underlying spin system tend to reveal local solutions. In this work we propose a full Bayesian modeling approach based on a quantum mechanical model of the spin system. The Bayesian formalism provides a global optimization strategy which allows to efficiently include prior knowledge about the spin system or to incorporate additional constraints concerning the parameters of interest. The proposed algorithm has been tested on synthetic and real 1D 1H-NMR data for various spin systems with increasing complexity. The results show that the Bayesian algorithm provides accurate estimates even for complex spectra with many overlapping regions, and that it can cope with symmetry induced local minima. By providing an unbiased estimate of the model evidence the proposed algorithm furthermore offers a way to discriminate between different spin system candidates. [Display omitted] •Bayesian analysis of 1D NMR spectra.•Total line shape analysis.•Quantum mechanical spectra prediction.•Inference of chemical shifts, coupling constants and line widths.•Selection of best explaining spin system based on model evidence.</description><identifier>ISSN: 1090-7807</identifier><identifier>ISSN: 1096-0856</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2024.107723</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Bayesian inference ; Chemical shifts ; Machine learning ; NMR spectroscopy ; Quantum spin dynamics ; Scalar couplings ; Spectra simulation ; Total line shape analysis</subject><ispartof>Journal of magnetic resonance (1997), 2024-07, Vol.364, p.107723, Article 107723</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>De Lorenzi, Flavio</creatorcontrib><creatorcontrib>Weinmann, Tom</creatorcontrib><creatorcontrib>Bruderer, Simon</creatorcontrib><creatorcontrib>Heitmann, Björn</creatorcontrib><creatorcontrib>Henrici, Andreas</creatorcontrib><creatorcontrib>Stingelin, Simon</creatorcontrib><title>Bayesian analysis of 1D 1H-NMR spectra</title><title>Journal of magnetic resonance (1997)</title><description>Extracting spin system parameters from 1D high resolution 1H-NMR spectra can be an intricate task requiring sophisticate methods. With a few exceptions methods to perform such a total line shape analysis commonly rely on local optimization techniques which for increasing complexity of the underlying spin system tend to reveal local solutions. In this work we propose a full Bayesian modeling approach based on a quantum mechanical model of the spin system. The Bayesian formalism provides a global optimization strategy which allows to efficiently include prior knowledge about the spin system or to incorporate additional constraints concerning the parameters of interest. The proposed algorithm has been tested on synthetic and real 1D 1H-NMR data for various spin systems with increasing complexity. The results show that the Bayesian algorithm provides accurate estimates even for complex spectra with many overlapping regions, and that it can cope with symmetry induced local minima. By providing an unbiased estimate of the model evidence the proposed algorithm furthermore offers a way to discriminate between different spin system candidates. [Display omitted] •Bayesian analysis of 1D NMR spectra.•Total line shape analysis.•Quantum mechanical spectra prediction.•Inference of chemical shifts, coupling constants and line widths.•Selection of best explaining spin system based on model evidence.</description><subject>Bayesian inference</subject><subject>Chemical shifts</subject><subject>Machine learning</subject><subject>NMR spectroscopy</subject><subject>Quantum spin dynamics</subject><subject>Scalar couplings</subject><subject>Spectra simulation</subject><subject>Total line shape analysis</subject><issn>1090-7807</issn><issn>1096-0856</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1Lw0AYhBdRsFZ_gLecxEvi-2azH8GT1o8KVUF6X3Y3b2BDmtRsK_TfmxpPMwPDMDyMXSNkCCjvmqzZDFkOeTFmpXJ-wmYIpUxBC3n65yFVGtQ5u4ixAUAUCmbs5tEeKAbbJbaz7SGGmPR1gk8JLtOP968kbsnvBnvJzmrbRrr61zlbvzyvF8t09fn6tnhYpaQFpoUkQOEKIE9au1pJKTSvhas0eu4AnQDlCZ3TlS2LEisE6wqPss5VCZzP2e00ux367z3FndmE6KltbUf9PhoOiuccucaxej9VabzzE2gw0QfqPFVhGC-bqg8GwRzhmMaMcMwRjpng8F_r4FYt</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>De Lorenzi, Flavio</creator><creator>Weinmann, Tom</creator><creator>Bruderer, Simon</creator><creator>Heitmann, Björn</creator><creator>Henrici, Andreas</creator><creator>Stingelin, Simon</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>7X8</scope></search><sort><creationdate>202407</creationdate><title>Bayesian analysis of 1D 1H-NMR spectra</title><author>De Lorenzi, Flavio ; Weinmann, Tom ; Bruderer, Simon ; Heitmann, Björn ; Henrici, Andreas ; Stingelin, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e851-46e015b40ece88bf766583f5bd81c3b01b507ce1bb8da9491d10ab4c16f279033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian inference</topic><topic>Chemical shifts</topic><topic>Machine learning</topic><topic>NMR spectroscopy</topic><topic>Quantum spin dynamics</topic><topic>Scalar couplings</topic><topic>Spectra simulation</topic><topic>Total line shape analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Lorenzi, Flavio</creatorcontrib><creatorcontrib>Weinmann, Tom</creatorcontrib><creatorcontrib>Bruderer, Simon</creatorcontrib><creatorcontrib>Heitmann, Björn</creatorcontrib><creatorcontrib>Henrici, Andreas</creatorcontrib><creatorcontrib>Stingelin, Simon</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Lorenzi, Flavio</au><au>Weinmann, Tom</au><au>Bruderer, Simon</au><au>Heitmann, Björn</au><au>Henrici, Andreas</au><au>Stingelin, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis of 1D 1H-NMR spectra</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><date>2024-07</date><risdate>2024</risdate><volume>364</volume><spage>107723</spage><pages>107723-</pages><artnum>107723</artnum><issn>1090-7807</issn><issn>1096-0856</issn><eissn>1096-0856</eissn><abstract>Extracting spin system parameters from 1D high resolution 1H-NMR spectra can be an intricate task requiring sophisticate methods. With a few exceptions methods to perform such a total line shape analysis commonly rely on local optimization techniques which for increasing complexity of the underlying spin system tend to reveal local solutions. In this work we propose a full Bayesian modeling approach based on a quantum mechanical model of the spin system. The Bayesian formalism provides a global optimization strategy which allows to efficiently include prior knowledge about the spin system or to incorporate additional constraints concerning the parameters of interest. The proposed algorithm has been tested on synthetic and real 1D 1H-NMR data for various spin systems with increasing complexity. The results show that the Bayesian algorithm provides accurate estimates even for complex spectra with many overlapping regions, and that it can cope with symmetry induced local minima. By providing an unbiased estimate of the model evidence the proposed algorithm furthermore offers a way to discriminate between different spin system candidates. [Display omitted] •Bayesian analysis of 1D NMR spectra.•Total line shape analysis.•Quantum mechanical spectra prediction.•Inference of chemical shifts, coupling constants and line widths.•Selection of best explaining spin system based on model evidence.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmr.2024.107723</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1090-7807
ispartof Journal of magnetic resonance (1997), 2024-07, Vol.364, p.107723, Article 107723
issn 1090-7807
1096-0856
1096-0856
language eng
recordid cdi_proquest_miscellaneous_3073231381
source ScienceDirect Freedom Collection 2022-2024
subjects Bayesian inference
Chemical shifts
Machine learning
NMR spectroscopy
Quantum spin dynamics
Scalar couplings
Spectra simulation
Total line shape analysis
title Bayesian analysis of 1D 1H-NMR spectra
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20of%201D%201H-NMR%20spectra&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=De%20Lorenzi,%20Flavio&rft.date=2024-07&rft.volume=364&rft.spage=107723&rft.pages=107723-&rft.artnum=107723&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2024.107723&rft_dat=%3Cproquest_elsev%3E3073231381%3C/proquest_elsev%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e851-46e015b40ece88bf766583f5bd81c3b01b507ce1bb8da9491d10ab4c16f279033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073231381&rft_id=info:pmid/&rfr_iscdi=true