Loading…

Transport, trapping, triplet fusion: thermally retarded exciton migration in tetracene single crystals

Efficient exciton migration is crucial for optoelectronic organic devices. While the transport of triplet excitons is generally slow compared to singlet excitons, triplet exciton migration in certain molecular semiconductors with endothermic singlet fission appears to be enhanced by a time-delayed r...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2024-07, Vol.16 (28), p.13471-13482
Main Authors: Muth, Dominik, Anhäuser, Sebastian, Bischof, Daniel, Krüger, Anton, Witte, Gregor, Gerhard, Marina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c262t-fb780c5b10204e0dc63b5b993a8a9ffc4476d0e37d24722339b3f0303530876e3
container_end_page 13482
container_issue 28
container_start_page 13471
container_title Nanoscale
container_volume 16
creator Muth, Dominik
Anhäuser, Sebastian
Bischof, Daniel
Krüger, Anton
Witte, Gregor
Gerhard, Marina
description Efficient exciton migration is crucial for optoelectronic organic devices. While the transport of triplet excitons is generally slow compared to singlet excitons, triplet exciton migration in certain molecular semiconductors with endothermic singlet fission appears to be enhanced by a time-delayed regeneration of the more mobile singlet species via triplet fusion. This combined transport mechanism could be exploited for devices, but the interplay between singlet fission and triplet fusion, as well as the role of trap states is not yet well understood. Here, we study the spatiotemporal exciton dynamics in the singlet fission material tetracene by means of time resolved photoluminescence micro-spectroscopy on crystalline samples of different quality. Varying the temperature allows us to modify the dynamic equilibrium between singlet, triplet and trapped excitons. Supported by a kinetic model, we find that thermally activated dissociation of triplet pairs into free triplet excitons can account for an increase of the diffusion length below room temperature. Moreover, we demonstrate that trapping competes efficiently with exciton migration. Temperature and material quality strongly influence spatiotemporal exciton dynamics in the endothermic singlet fission material tetracene. Underlying transport mechanisms are disentangled by combining spectral and spatial data from TRPL experiments.
doi_str_mv 10.1039/d4nr01086h
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073233544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073233544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-fb780c5b10204e0dc63b5b993a8a9ffc4476d0e37d24722339b3f0303530876e3</originalsourceid><addsrcrecordid>eNpd0U1LxDAQBuAgit8X70rAi4ir00y2ab2J3yAKoueSplOttGlNUnD_vdHVFTzNQJ68DDOM7SRwnADmJ5W0DhLI0tclti5AwgRRieVFn8o1tuH9G0CaY4qrbA2zHDPIYJ3VT05bP_QuHPHg9DA09uWra4aWAq9H3_T2lIdXcp1u2xl3FLSrqOL0YZrQW941L06HqHhjeaCYYcgS9zGnJW7czAfd-i22UsdC2z91kz1fXT6d30zuHq5vz8_uJkakIkzqUmVgpmUCcXSCyqRYTss8R53pvK6NlCqtgFBVQiohEPMSa0DAKUKmUsJNdjDPHVz_PpIPRdd4Q22rLfWjLxAUxm9TKSPd_0ff-tHZOF1UmUiEUomI6nCujOu9d1QXg2s67WZFAsXX9osLef_4vf2biPd-Iseyo2pBf9cdwe4cOG8Wr3_nw0_auYma</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082127712</pqid></control><display><type>article</type><title>Transport, trapping, triplet fusion: thermally retarded exciton migration in tetracene single crystals</title><source>Royal Society of Chemistry Journals</source><creator>Muth, Dominik ; Anhäuser, Sebastian ; Bischof, Daniel ; Krüger, Anton ; Witte, Gregor ; Gerhard, Marina</creator><creatorcontrib>Muth, Dominik ; Anhäuser, Sebastian ; Bischof, Daniel ; Krüger, Anton ; Witte, Gregor ; Gerhard, Marina</creatorcontrib><description>Efficient exciton migration is crucial for optoelectronic organic devices. While the transport of triplet excitons is generally slow compared to singlet excitons, triplet exciton migration in certain molecular semiconductors with endothermic singlet fission appears to be enhanced by a time-delayed regeneration of the more mobile singlet species via triplet fusion. This combined transport mechanism could be exploited for devices, but the interplay between singlet fission and triplet fusion, as well as the role of trap states is not yet well understood. Here, we study the spatiotemporal exciton dynamics in the singlet fission material tetracene by means of time resolved photoluminescence micro-spectroscopy on crystalline samples of different quality. Varying the temperature allows us to modify the dynamic equilibrium between singlet, triplet and trapped excitons. Supported by a kinetic model, we find that thermally activated dissociation of triplet pairs into free triplet excitons can account for an increase of the diffusion length below room temperature. Moreover, we demonstrate that trapping competes efficiently with exciton migration. Temperature and material quality strongly influence spatiotemporal exciton dynamics in the endothermic singlet fission material tetracene. Underlying transport mechanisms are disentangled by combining spectral and spatial data from TRPL experiments.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr01086h</identifier><identifier>PMID: 38938080</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Diffusion length ; Excitation spectra ; Excitons ; Fission ; Optoelectronic devices ; Organic semiconductors ; Photoluminescence ; Room temperature ; Single crystals ; Trapping</subject><ispartof>Nanoscale, 2024-07, Vol.16 (28), p.13471-13482</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-fb780c5b10204e0dc63b5b993a8a9ffc4476d0e37d24722339b3f0303530876e3</cites><orcidid>0000-0001-5117-7947 ; 0009-0005-4713-4852 ; 0000-0003-2237-0953 ; 0000-0002-6127-5388 ; 0000-0002-6539-4675 ; 0009-0000-6474-8606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38938080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muth, Dominik</creatorcontrib><creatorcontrib>Anhäuser, Sebastian</creatorcontrib><creatorcontrib>Bischof, Daniel</creatorcontrib><creatorcontrib>Krüger, Anton</creatorcontrib><creatorcontrib>Witte, Gregor</creatorcontrib><creatorcontrib>Gerhard, Marina</creatorcontrib><title>Transport, trapping, triplet fusion: thermally retarded exciton migration in tetracene single crystals</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Efficient exciton migration is crucial for optoelectronic organic devices. While the transport of triplet excitons is generally slow compared to singlet excitons, triplet exciton migration in certain molecular semiconductors with endothermic singlet fission appears to be enhanced by a time-delayed regeneration of the more mobile singlet species via triplet fusion. This combined transport mechanism could be exploited for devices, but the interplay between singlet fission and triplet fusion, as well as the role of trap states is not yet well understood. Here, we study the spatiotemporal exciton dynamics in the singlet fission material tetracene by means of time resolved photoluminescence micro-spectroscopy on crystalline samples of different quality. Varying the temperature allows us to modify the dynamic equilibrium between singlet, triplet and trapped excitons. Supported by a kinetic model, we find that thermally activated dissociation of triplet pairs into free triplet excitons can account for an increase of the diffusion length below room temperature. Moreover, we demonstrate that trapping competes efficiently with exciton migration. Temperature and material quality strongly influence spatiotemporal exciton dynamics in the endothermic singlet fission material tetracene. Underlying transport mechanisms are disentangled by combining spectral and spatial data from TRPL experiments.</description><subject>Diffusion length</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Fission</subject><subject>Optoelectronic devices</subject><subject>Organic semiconductors</subject><subject>Photoluminescence</subject><subject>Room temperature</subject><subject>Single crystals</subject><subject>Trapping</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LxDAQBuAgit8X70rAi4ir00y2ab2J3yAKoueSplOttGlNUnD_vdHVFTzNQJ68DDOM7SRwnADmJ5W0DhLI0tclti5AwgRRieVFn8o1tuH9G0CaY4qrbA2zHDPIYJ3VT05bP_QuHPHg9DA09uWra4aWAq9H3_T2lIdXcp1u2xl3FLSrqOL0YZrQW941L06HqHhjeaCYYcgS9zGnJW7czAfd-i22UsdC2z91kz1fXT6d30zuHq5vz8_uJkakIkzqUmVgpmUCcXSCyqRYTss8R53pvK6NlCqtgFBVQiohEPMSa0DAKUKmUsJNdjDPHVz_PpIPRdd4Q22rLfWjLxAUxm9TKSPd_0ff-tHZOF1UmUiEUomI6nCujOu9d1QXg2s67WZFAsXX9osLef_4vf2biPd-Iseyo2pBf9cdwe4cOG8Wr3_nw0_auYma</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Muth, Dominik</creator><creator>Anhäuser, Sebastian</creator><creator>Bischof, Daniel</creator><creator>Krüger, Anton</creator><creator>Witte, Gregor</creator><creator>Gerhard, Marina</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5117-7947</orcidid><orcidid>https://orcid.org/0009-0005-4713-4852</orcidid><orcidid>https://orcid.org/0000-0003-2237-0953</orcidid><orcidid>https://orcid.org/0000-0002-6127-5388</orcidid><orcidid>https://orcid.org/0000-0002-6539-4675</orcidid><orcidid>https://orcid.org/0009-0000-6474-8606</orcidid></search><sort><creationdate>20240718</creationdate><title>Transport, trapping, triplet fusion: thermally retarded exciton migration in tetracene single crystals</title><author>Muth, Dominik ; Anhäuser, Sebastian ; Bischof, Daniel ; Krüger, Anton ; Witte, Gregor ; Gerhard, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-fb780c5b10204e0dc63b5b993a8a9ffc4476d0e37d24722339b3f0303530876e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Diffusion length</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Fission</topic><topic>Optoelectronic devices</topic><topic>Organic semiconductors</topic><topic>Photoluminescence</topic><topic>Room temperature</topic><topic>Single crystals</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muth, Dominik</creatorcontrib><creatorcontrib>Anhäuser, Sebastian</creatorcontrib><creatorcontrib>Bischof, Daniel</creatorcontrib><creatorcontrib>Krüger, Anton</creatorcontrib><creatorcontrib>Witte, Gregor</creatorcontrib><creatorcontrib>Gerhard, Marina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muth, Dominik</au><au>Anhäuser, Sebastian</au><au>Bischof, Daniel</au><au>Krüger, Anton</au><au>Witte, Gregor</au><au>Gerhard, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport, trapping, triplet fusion: thermally retarded exciton migration in tetracene single crystals</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2024-07-18</date><risdate>2024</risdate><volume>16</volume><issue>28</issue><spage>13471</spage><epage>13482</epage><pages>13471-13482</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>Efficient exciton migration is crucial for optoelectronic organic devices. While the transport of triplet excitons is generally slow compared to singlet excitons, triplet exciton migration in certain molecular semiconductors with endothermic singlet fission appears to be enhanced by a time-delayed regeneration of the more mobile singlet species via triplet fusion. This combined transport mechanism could be exploited for devices, but the interplay between singlet fission and triplet fusion, as well as the role of trap states is not yet well understood. Here, we study the spatiotemporal exciton dynamics in the singlet fission material tetracene by means of time resolved photoluminescence micro-spectroscopy on crystalline samples of different quality. Varying the temperature allows us to modify the dynamic equilibrium between singlet, triplet and trapped excitons. Supported by a kinetic model, we find that thermally activated dissociation of triplet pairs into free triplet excitons can account for an increase of the diffusion length below room temperature. Moreover, we demonstrate that trapping competes efficiently with exciton migration. Temperature and material quality strongly influence spatiotemporal exciton dynamics in the endothermic singlet fission material tetracene. Underlying transport mechanisms are disentangled by combining spectral and spatial data from TRPL experiments.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38938080</pmid><doi>10.1039/d4nr01086h</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5117-7947</orcidid><orcidid>https://orcid.org/0009-0005-4713-4852</orcidid><orcidid>https://orcid.org/0000-0003-2237-0953</orcidid><orcidid>https://orcid.org/0000-0002-6127-5388</orcidid><orcidid>https://orcid.org/0000-0002-6539-4675</orcidid><orcidid>https://orcid.org/0009-0000-6474-8606</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-07, Vol.16 (28), p.13471-13482
issn 2040-3364
2040-3372
2040-3372
language eng
recordid cdi_proquest_miscellaneous_3073233544
source Royal Society of Chemistry Journals
subjects Diffusion length
Excitation spectra
Excitons
Fission
Optoelectronic devices
Organic semiconductors
Photoluminescence
Room temperature
Single crystals
Trapping
title Transport, trapping, triplet fusion: thermally retarded exciton migration in tetracene single crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport,%20trapping,%20triplet%20fusion:%20thermally%20retarded%20exciton%20migration%20in%20tetracene%20single%20crystals&rft.jtitle=Nanoscale&rft.au=Muth,%20Dominik&rft.date=2024-07-18&rft.volume=16&rft.issue=28&rft.spage=13471&rft.epage=13482&rft.pages=13471-13482&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr01086h&rft_dat=%3Cproquest_cross%3E3073233544%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262t-fb780c5b10204e0dc63b5b993a8a9ffc4476d0e37d24722339b3f0303530876e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082127712&rft_id=info:pmid/38938080&rfr_iscdi=true