Loading…
Computational model of the cancer necrotic core formation in a tumor-on-a-chip device
•Finite element simulation of necrotic core formation in a tumor-on-a-chip device.•Nutrient availability and local pH are crucial in governing necrotic core dynamics.•High concentration of living cells alters diffusivity by changing MEC morphology.•Warburg effect reproduces cancer metabolism, impact...
Saved in:
Published in: | Journal of theoretical biology 2024-09, Vol.592, p.111893, Article 111893 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c237t-84d08817bed3bf4f03ff495a4623c5e182d70609f95fcfdced7ce364e62546013 |
container_end_page | |
container_issue | |
container_start_page | 111893 |
container_title | Journal of theoretical biology |
container_volume | 592 |
creator | Bonifácio, Elton Diêgo Araújo, Cleudmar Amaral Guimarães, Marcília Valéria de Souza, Márcio Peres Lima, Thiago Parente de Avelar Freitas, Bethânia Alves González-Torres, Libardo Andrés |
description | •Finite element simulation of necrotic core formation in a tumor-on-a-chip device.•Nutrient availability and local pH are crucial in governing necrotic core dynamics.•High concentration of living cells alters diffusivity by changing MEC morphology.•Warburg effect reproduces cancer metabolism, impacting pH and nutrient gradients.
The mechanisms underlying the formation of necrotic regions within avascular tumors are complex and poorly understood. In this paper, we investigate the formation of a necrotic core in a 3D tumor cell culture within a microfluidic device, considering oxygen, nutrients, and the microenvironment acidification by means of a computational-mathematical model. Our objective is to simulate cell processes, including proliferation and death inside a microfluidic device, according to the microenvironmental conditions. We employed approximation utilizing finite element models taking into account glucose, oxygen, and hydrogen ions diffusion, consumption and production, as well as cell proliferation, migration and death, addressing how tumor cells evolve under different conditions. The resulting mathematical model was examined under different scenarios, being capable of reproducing cell death and proliferation under different cell concentrations, and the formation of a necrotic core, in good agreement with experimental data reported in the literature. This approach not only advances our fundamental understanding of necrotic core formation but also provides a robust computational platform to study personalized therapeutic strategies, offering an important tool in cancer research and treatment design. |
doi_str_mv | 10.1016/j.jtbi.2024.111893 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073712620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519324001772</els_id><sourcerecordid>3073712620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-84d08817bed3bf4f03ff495a4623c5e182d70609f95fcfdced7ce364e62546013</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWh9_wIVk6WbqzWNe4EaKLxDc2HVIkxuaMjOpSUbw3zu16tLV2XznwPkIuWQwZ8Cqm818k1d-zoHLOWOsacUBmTFoy6IpJTskMwDOi5K14oScprQBgFaK6piciKaVUjQwI8tF6Ldj1tmHQXe0DxY7GhzNa6RGDwYjHdDEkL2hJkSkLsT-m6Z-oJrmsQ-xCEOhC7P2W2rxwxs8J0dOdwkvfvKMLB_u3xZPxcvr4_Pi7qUwXNS5aKSFpmH1Cq1YOelAOCfbUsuKC1Mia7itoYLWtaUzzhq0tUFRSax4KStg4oxc73e3MbyPmLLqfTLYdXrAMCYloBY14xWHCeV7dDqTUkSnttH3On4qBmqnU23UTqfa6VR7nVPp6md_XPVo_yq__ibgdg_g9PLDY1TJeJy0WR_RZGWD_2__Cy-9hfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073712620</pqid></control><display><type>article</type><title>Computational model of the cancer necrotic core formation in a tumor-on-a-chip device</title><source>ScienceDirect Freedom Collection</source><creator>Bonifácio, Elton Diêgo ; Araújo, Cleudmar Amaral ; Guimarães, Marcília Valéria ; de Souza, Márcio Peres ; Lima, Thiago Parente ; de Avelar Freitas, Bethânia Alves ; González-Torres, Libardo Andrés</creator><creatorcontrib>Bonifácio, Elton Diêgo ; Araújo, Cleudmar Amaral ; Guimarães, Marcília Valéria ; de Souza, Márcio Peres ; Lima, Thiago Parente ; de Avelar Freitas, Bethânia Alves ; González-Torres, Libardo Andrés</creatorcontrib><description>•Finite element simulation of necrotic core formation in a tumor-on-a-chip device.•Nutrient availability and local pH are crucial in governing necrotic core dynamics.•High concentration of living cells alters diffusivity by changing MEC morphology.•Warburg effect reproduces cancer metabolism, impacting pH and nutrient gradients.
The mechanisms underlying the formation of necrotic regions within avascular tumors are complex and poorly understood. In this paper, we investigate the formation of a necrotic core in a 3D tumor cell culture within a microfluidic device, considering oxygen, nutrients, and the microenvironment acidification by means of a computational-mathematical model. Our objective is to simulate cell processes, including proliferation and death inside a microfluidic device, according to the microenvironmental conditions. We employed approximation utilizing finite element models taking into account glucose, oxygen, and hydrogen ions diffusion, consumption and production, as well as cell proliferation, migration and death, addressing how tumor cells evolve under different conditions. The resulting mathematical model was examined under different scenarios, being capable of reproducing cell death and proliferation under different cell concentrations, and the formation of a necrotic core, in good agreement with experimental data reported in the literature. This approach not only advances our fundamental understanding of necrotic core formation but also provides a robust computational platform to study personalized therapeutic strategies, offering an important tool in cancer research and treatment design.</description><identifier>ISSN: 0022-5193</identifier><identifier>ISSN: 1095-8541</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2024.111893</identifier><identifier>PMID: 38944380</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Finite element analysis ; Microfluidic devices ; Necrotic core ; Tumor cells</subject><ispartof>Journal of theoretical biology, 2024-09, Vol.592, p.111893, Article 111893</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-84d08817bed3bf4f03ff495a4623c5e182d70609f95fcfdced7ce364e62546013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38944380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonifácio, Elton Diêgo</creatorcontrib><creatorcontrib>Araújo, Cleudmar Amaral</creatorcontrib><creatorcontrib>Guimarães, Marcília Valéria</creatorcontrib><creatorcontrib>de Souza, Márcio Peres</creatorcontrib><creatorcontrib>Lima, Thiago Parente</creatorcontrib><creatorcontrib>de Avelar Freitas, Bethânia Alves</creatorcontrib><creatorcontrib>González-Torres, Libardo Andrés</creatorcontrib><title>Computational model of the cancer necrotic core formation in a tumor-on-a-chip device</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>•Finite element simulation of necrotic core formation in a tumor-on-a-chip device.•Nutrient availability and local pH are crucial in governing necrotic core dynamics.•High concentration of living cells alters diffusivity by changing MEC morphology.•Warburg effect reproduces cancer metabolism, impacting pH and nutrient gradients.
The mechanisms underlying the formation of necrotic regions within avascular tumors are complex and poorly understood. In this paper, we investigate the formation of a necrotic core in a 3D tumor cell culture within a microfluidic device, considering oxygen, nutrients, and the microenvironment acidification by means of a computational-mathematical model. Our objective is to simulate cell processes, including proliferation and death inside a microfluidic device, according to the microenvironmental conditions. We employed approximation utilizing finite element models taking into account glucose, oxygen, and hydrogen ions diffusion, consumption and production, as well as cell proliferation, migration and death, addressing how tumor cells evolve under different conditions. The resulting mathematical model was examined under different scenarios, being capable of reproducing cell death and proliferation under different cell concentrations, and the formation of a necrotic core, in good agreement with experimental data reported in the literature. This approach not only advances our fundamental understanding of necrotic core formation but also provides a robust computational platform to study personalized therapeutic strategies, offering an important tool in cancer research and treatment design.</description><subject>Finite element analysis</subject><subject>Microfluidic devices</subject><subject>Necrotic core</subject><subject>Tumor cells</subject><issn>0022-5193</issn><issn>1095-8541</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWh9_wIVk6WbqzWNe4EaKLxDc2HVIkxuaMjOpSUbw3zu16tLV2XznwPkIuWQwZ8Cqm818k1d-zoHLOWOsacUBmTFoy6IpJTskMwDOi5K14oScprQBgFaK6piciKaVUjQwI8tF6Ldj1tmHQXe0DxY7GhzNa6RGDwYjHdDEkL2hJkSkLsT-m6Z-oJrmsQ-xCEOhC7P2W2rxwxs8J0dOdwkvfvKMLB_u3xZPxcvr4_Pi7qUwXNS5aKSFpmH1Cq1YOelAOCfbUsuKC1Mia7itoYLWtaUzzhq0tUFRSax4KStg4oxc73e3MbyPmLLqfTLYdXrAMCYloBY14xWHCeV7dDqTUkSnttH3On4qBmqnU23UTqfa6VR7nVPp6md_XPVo_yq__ibgdg_g9PLDY1TJeJy0WR_RZGWD_2__Cy-9hfI</recordid><startdate>20240907</startdate><enddate>20240907</enddate><creator>Bonifácio, Elton Diêgo</creator><creator>Araújo, Cleudmar Amaral</creator><creator>Guimarães, Marcília Valéria</creator><creator>de Souza, Márcio Peres</creator><creator>Lima, Thiago Parente</creator><creator>de Avelar Freitas, Bethânia Alves</creator><creator>González-Torres, Libardo Andrés</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240907</creationdate><title>Computational model of the cancer necrotic core formation in a tumor-on-a-chip device</title><author>Bonifácio, Elton Diêgo ; Araújo, Cleudmar Amaral ; Guimarães, Marcília Valéria ; de Souza, Márcio Peres ; Lima, Thiago Parente ; de Avelar Freitas, Bethânia Alves ; González-Torres, Libardo Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-84d08817bed3bf4f03ff495a4623c5e182d70609f95fcfdced7ce364e62546013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Finite element analysis</topic><topic>Microfluidic devices</topic><topic>Necrotic core</topic><topic>Tumor cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonifácio, Elton Diêgo</creatorcontrib><creatorcontrib>Araújo, Cleudmar Amaral</creatorcontrib><creatorcontrib>Guimarães, Marcília Valéria</creatorcontrib><creatorcontrib>de Souza, Márcio Peres</creatorcontrib><creatorcontrib>Lima, Thiago Parente</creatorcontrib><creatorcontrib>de Avelar Freitas, Bethânia Alves</creatorcontrib><creatorcontrib>González-Torres, Libardo Andrés</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonifácio, Elton Diêgo</au><au>Araújo, Cleudmar Amaral</au><au>Guimarães, Marcília Valéria</au><au>de Souza, Márcio Peres</au><au>Lima, Thiago Parente</au><au>de Avelar Freitas, Bethânia Alves</au><au>González-Torres, Libardo Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational model of the cancer necrotic core formation in a tumor-on-a-chip device</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2024-09-07</date><risdate>2024</risdate><volume>592</volume><spage>111893</spage><pages>111893-</pages><artnum>111893</artnum><issn>0022-5193</issn><issn>1095-8541</issn><eissn>1095-8541</eissn><abstract>•Finite element simulation of necrotic core formation in a tumor-on-a-chip device.•Nutrient availability and local pH are crucial in governing necrotic core dynamics.•High concentration of living cells alters diffusivity by changing MEC morphology.•Warburg effect reproduces cancer metabolism, impacting pH and nutrient gradients.
The mechanisms underlying the formation of necrotic regions within avascular tumors are complex and poorly understood. In this paper, we investigate the formation of a necrotic core in a 3D tumor cell culture within a microfluidic device, considering oxygen, nutrients, and the microenvironment acidification by means of a computational-mathematical model. Our objective is to simulate cell processes, including proliferation and death inside a microfluidic device, according to the microenvironmental conditions. We employed approximation utilizing finite element models taking into account glucose, oxygen, and hydrogen ions diffusion, consumption and production, as well as cell proliferation, migration and death, addressing how tumor cells evolve under different conditions. The resulting mathematical model was examined under different scenarios, being capable of reproducing cell death and proliferation under different cell concentrations, and the formation of a necrotic core, in good agreement with experimental data reported in the literature. This approach not only advances our fundamental understanding of necrotic core formation but also provides a robust computational platform to study personalized therapeutic strategies, offering an important tool in cancer research and treatment design.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38944380</pmid><doi>10.1016/j.jtbi.2024.111893</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2024-09, Vol.592, p.111893, Article 111893 |
issn | 0022-5193 1095-8541 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_3073712620 |
source | ScienceDirect Freedom Collection |
subjects | Finite element analysis Microfluidic devices Necrotic core Tumor cells |
title | Computational model of the cancer necrotic core formation in a tumor-on-a-chip device |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20model%20of%20the%20cancer%20necrotic%20core%20formation%20in%20a%20tumor-on-a-chip%20device&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Bonif%C3%A1cio,%20Elton%20Di%C3%AAgo&rft.date=2024-09-07&rft.volume=592&rft.spage=111893&rft.pages=111893-&rft.artnum=111893&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2024.111893&rft_dat=%3Cproquest_cross%3E3073712620%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237t-84d08817bed3bf4f03ff495a4623c5e182d70609f95fcfdced7ce364e62546013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073712620&rft_id=info:pmid/38944380&rfr_iscdi=true |