Loading…

Computational model of the cancer necrotic core formation in a tumor-on-a-chip device

•Finite element simulation of necrotic core formation in a tumor-on-a-chip device.•Nutrient availability and local pH are crucial in governing necrotic core dynamics.•High concentration of living cells alters diffusivity by changing MEC morphology.•Warburg effect reproduces cancer metabolism, impact...

Full description

Saved in:
Bibliographic Details
Published in:Journal of theoretical biology 2024-09, Vol.592, p.111893, Article 111893
Main Authors: Bonifácio, Elton Diêgo, Araújo, Cleudmar Amaral, Guimarães, Marcília Valéria, de Souza, Márcio Peres, Lima, Thiago Parente, de Avelar Freitas, Bethânia Alves, González-Torres, Libardo Andrés
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c237t-84d08817bed3bf4f03ff495a4623c5e182d70609f95fcfdced7ce364e62546013
container_end_page
container_issue
container_start_page 111893
container_title Journal of theoretical biology
container_volume 592
creator Bonifácio, Elton Diêgo
Araújo, Cleudmar Amaral
Guimarães, Marcília Valéria
de Souza, Márcio Peres
Lima, Thiago Parente
de Avelar Freitas, Bethânia Alves
González-Torres, Libardo Andrés
description •Finite element simulation of necrotic core formation in a tumor-on-a-chip device.•Nutrient availability and local pH are crucial in governing necrotic core dynamics.•High concentration of living cells alters diffusivity by changing MEC morphology.•Warburg effect reproduces cancer metabolism, impacting pH and nutrient gradients. The mechanisms underlying the formation of necrotic regions within avascular tumors are complex and poorly understood. In this paper, we investigate the formation of a necrotic core in a 3D tumor cell culture within a microfluidic device, considering oxygen, nutrients, and the microenvironment acidification by means of a computational-mathematical model. Our objective is to simulate cell processes, including proliferation and death inside a microfluidic device, according to the microenvironmental conditions. We employed approximation utilizing finite element models taking into account glucose, oxygen, and hydrogen ions diffusion, consumption and production, as well as cell proliferation, migration and death, addressing how tumor cells evolve under different conditions. The resulting mathematical model was examined under different scenarios, being capable of reproducing cell death and proliferation under different cell concentrations, and the formation of a necrotic core, in good agreement with experimental data reported in the literature. This approach not only advances our fundamental understanding of necrotic core formation but also provides a robust computational platform to study personalized therapeutic strategies, offering an important tool in cancer research and treatment design.
doi_str_mv 10.1016/j.jtbi.2024.111893
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3073712620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519324001772</els_id><sourcerecordid>3073712620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-84d08817bed3bf4f03ff495a4623c5e182d70609f95fcfdced7ce364e62546013</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWh9_wIVk6WbqzWNe4EaKLxDc2HVIkxuaMjOpSUbw3zu16tLV2XznwPkIuWQwZ8Cqm818k1d-zoHLOWOsacUBmTFoy6IpJTskMwDOi5K14oScprQBgFaK6piciKaVUjQwI8tF6Ldj1tmHQXe0DxY7GhzNa6RGDwYjHdDEkL2hJkSkLsT-m6Z-oJrmsQ-xCEOhC7P2W2rxwxs8J0dOdwkvfvKMLB_u3xZPxcvr4_Pi7qUwXNS5aKSFpmH1Cq1YOelAOCfbUsuKC1Mia7itoYLWtaUzzhq0tUFRSax4KStg4oxc73e3MbyPmLLqfTLYdXrAMCYloBY14xWHCeV7dDqTUkSnttH3On4qBmqnU23UTqfa6VR7nVPp6md_XPVo_yq__ibgdg_g9PLDY1TJeJy0WR_RZGWD_2__Cy-9hfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073712620</pqid></control><display><type>article</type><title>Computational model of the cancer necrotic core formation in a tumor-on-a-chip device</title><source>ScienceDirect Freedom Collection</source><creator>Bonifácio, Elton Diêgo ; Araújo, Cleudmar Amaral ; Guimarães, Marcília Valéria ; de Souza, Márcio Peres ; Lima, Thiago Parente ; de Avelar Freitas, Bethânia Alves ; González-Torres, Libardo Andrés</creator><creatorcontrib>Bonifácio, Elton Diêgo ; Araújo, Cleudmar Amaral ; Guimarães, Marcília Valéria ; de Souza, Márcio Peres ; Lima, Thiago Parente ; de Avelar Freitas, Bethânia Alves ; González-Torres, Libardo Andrés</creatorcontrib><description>•Finite element simulation of necrotic core formation in a tumor-on-a-chip device.•Nutrient availability and local pH are crucial in governing necrotic core dynamics.•High concentration of living cells alters diffusivity by changing MEC morphology.•Warburg effect reproduces cancer metabolism, impacting pH and nutrient gradients. The mechanisms underlying the formation of necrotic regions within avascular tumors are complex and poorly understood. In this paper, we investigate the formation of a necrotic core in a 3D tumor cell culture within a microfluidic device, considering oxygen, nutrients, and the microenvironment acidification by means of a computational-mathematical model. Our objective is to simulate cell processes, including proliferation and death inside a microfluidic device, according to the microenvironmental conditions. We employed approximation utilizing finite element models taking into account glucose, oxygen, and hydrogen ions diffusion, consumption and production, as well as cell proliferation, migration and death, addressing how tumor cells evolve under different conditions. The resulting mathematical model was examined under different scenarios, being capable of reproducing cell death and proliferation under different cell concentrations, and the formation of a necrotic core, in good agreement with experimental data reported in the literature. This approach not only advances our fundamental understanding of necrotic core formation but also provides a robust computational platform to study personalized therapeutic strategies, offering an important tool in cancer research and treatment design.</description><identifier>ISSN: 0022-5193</identifier><identifier>ISSN: 1095-8541</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2024.111893</identifier><identifier>PMID: 38944380</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Finite element analysis ; Microfluidic devices ; Necrotic core ; Tumor cells</subject><ispartof>Journal of theoretical biology, 2024-09, Vol.592, p.111893, Article 111893</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-84d08817bed3bf4f03ff495a4623c5e182d70609f95fcfdced7ce364e62546013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38944380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonifácio, Elton Diêgo</creatorcontrib><creatorcontrib>Araújo, Cleudmar Amaral</creatorcontrib><creatorcontrib>Guimarães, Marcília Valéria</creatorcontrib><creatorcontrib>de Souza, Márcio Peres</creatorcontrib><creatorcontrib>Lima, Thiago Parente</creatorcontrib><creatorcontrib>de Avelar Freitas, Bethânia Alves</creatorcontrib><creatorcontrib>González-Torres, Libardo Andrés</creatorcontrib><title>Computational model of the cancer necrotic core formation in a tumor-on-a-chip device</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>•Finite element simulation of necrotic core formation in a tumor-on-a-chip device.•Nutrient availability and local pH are crucial in governing necrotic core dynamics.•High concentration of living cells alters diffusivity by changing MEC morphology.•Warburg effect reproduces cancer metabolism, impacting pH and nutrient gradients. The mechanisms underlying the formation of necrotic regions within avascular tumors are complex and poorly understood. In this paper, we investigate the formation of a necrotic core in a 3D tumor cell culture within a microfluidic device, considering oxygen, nutrients, and the microenvironment acidification by means of a computational-mathematical model. Our objective is to simulate cell processes, including proliferation and death inside a microfluidic device, according to the microenvironmental conditions. We employed approximation utilizing finite element models taking into account glucose, oxygen, and hydrogen ions diffusion, consumption and production, as well as cell proliferation, migration and death, addressing how tumor cells evolve under different conditions. The resulting mathematical model was examined under different scenarios, being capable of reproducing cell death and proliferation under different cell concentrations, and the formation of a necrotic core, in good agreement with experimental data reported in the literature. This approach not only advances our fundamental understanding of necrotic core formation but also provides a robust computational platform to study personalized therapeutic strategies, offering an important tool in cancer research and treatment design.</description><subject>Finite element analysis</subject><subject>Microfluidic devices</subject><subject>Necrotic core</subject><subject>Tumor cells</subject><issn>0022-5193</issn><issn>1095-8541</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWh9_wIVk6WbqzWNe4EaKLxDc2HVIkxuaMjOpSUbw3zu16tLV2XznwPkIuWQwZ8Cqm818k1d-zoHLOWOsacUBmTFoy6IpJTskMwDOi5K14oScprQBgFaK6piciKaVUjQwI8tF6Ldj1tmHQXe0DxY7GhzNa6RGDwYjHdDEkL2hJkSkLsT-m6Z-oJrmsQ-xCEOhC7P2W2rxwxs8J0dOdwkvfvKMLB_u3xZPxcvr4_Pi7qUwXNS5aKSFpmH1Cq1YOelAOCfbUsuKC1Mia7itoYLWtaUzzhq0tUFRSax4KStg4oxc73e3MbyPmLLqfTLYdXrAMCYloBY14xWHCeV7dDqTUkSnttH3On4qBmqnU23UTqfa6VR7nVPp6md_XPVo_yq__ibgdg_g9PLDY1TJeJy0WR_RZGWD_2__Cy-9hfI</recordid><startdate>20240907</startdate><enddate>20240907</enddate><creator>Bonifácio, Elton Diêgo</creator><creator>Araújo, Cleudmar Amaral</creator><creator>Guimarães, Marcília Valéria</creator><creator>de Souza, Márcio Peres</creator><creator>Lima, Thiago Parente</creator><creator>de Avelar Freitas, Bethânia Alves</creator><creator>González-Torres, Libardo Andrés</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240907</creationdate><title>Computational model of the cancer necrotic core formation in a tumor-on-a-chip device</title><author>Bonifácio, Elton Diêgo ; Araújo, Cleudmar Amaral ; Guimarães, Marcília Valéria ; de Souza, Márcio Peres ; Lima, Thiago Parente ; de Avelar Freitas, Bethânia Alves ; González-Torres, Libardo Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-84d08817bed3bf4f03ff495a4623c5e182d70609f95fcfdced7ce364e62546013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Finite element analysis</topic><topic>Microfluidic devices</topic><topic>Necrotic core</topic><topic>Tumor cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonifácio, Elton Diêgo</creatorcontrib><creatorcontrib>Araújo, Cleudmar Amaral</creatorcontrib><creatorcontrib>Guimarães, Marcília Valéria</creatorcontrib><creatorcontrib>de Souza, Márcio Peres</creatorcontrib><creatorcontrib>Lima, Thiago Parente</creatorcontrib><creatorcontrib>de Avelar Freitas, Bethânia Alves</creatorcontrib><creatorcontrib>González-Torres, Libardo Andrés</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonifácio, Elton Diêgo</au><au>Araújo, Cleudmar Amaral</au><au>Guimarães, Marcília Valéria</au><au>de Souza, Márcio Peres</au><au>Lima, Thiago Parente</au><au>de Avelar Freitas, Bethânia Alves</au><au>González-Torres, Libardo Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational model of the cancer necrotic core formation in a tumor-on-a-chip device</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2024-09-07</date><risdate>2024</risdate><volume>592</volume><spage>111893</spage><pages>111893-</pages><artnum>111893</artnum><issn>0022-5193</issn><issn>1095-8541</issn><eissn>1095-8541</eissn><abstract>•Finite element simulation of necrotic core formation in a tumor-on-a-chip device.•Nutrient availability and local pH are crucial in governing necrotic core dynamics.•High concentration of living cells alters diffusivity by changing MEC morphology.•Warburg effect reproduces cancer metabolism, impacting pH and nutrient gradients. The mechanisms underlying the formation of necrotic regions within avascular tumors are complex and poorly understood. In this paper, we investigate the formation of a necrotic core in a 3D tumor cell culture within a microfluidic device, considering oxygen, nutrients, and the microenvironment acidification by means of a computational-mathematical model. Our objective is to simulate cell processes, including proliferation and death inside a microfluidic device, according to the microenvironmental conditions. We employed approximation utilizing finite element models taking into account glucose, oxygen, and hydrogen ions diffusion, consumption and production, as well as cell proliferation, migration and death, addressing how tumor cells evolve under different conditions. The resulting mathematical model was examined under different scenarios, being capable of reproducing cell death and proliferation under different cell concentrations, and the formation of a necrotic core, in good agreement with experimental data reported in the literature. This approach not only advances our fundamental understanding of necrotic core formation but also provides a robust computational platform to study personalized therapeutic strategies, offering an important tool in cancer research and treatment design.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38944380</pmid><doi>10.1016/j.jtbi.2024.111893</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2024-09, Vol.592, p.111893, Article 111893
issn 0022-5193
1095-8541
1095-8541
language eng
recordid cdi_proquest_miscellaneous_3073712620
source ScienceDirect Freedom Collection
subjects Finite element analysis
Microfluidic devices
Necrotic core
Tumor cells
title Computational model of the cancer necrotic core formation in a tumor-on-a-chip device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20model%20of%20the%20cancer%20necrotic%20core%20formation%20in%20a%20tumor-on-a-chip%20device&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Bonif%C3%A1cio,%20Elton%20Di%C3%AAgo&rft.date=2024-09-07&rft.volume=592&rft.spage=111893&rft.pages=111893-&rft.artnum=111893&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2024.111893&rft_dat=%3Cproquest_cross%3E3073712620%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237t-84d08817bed3bf4f03ff495a4623c5e182d70609f95fcfdced7ce364e62546013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073712620&rft_id=info:pmid/38944380&rfr_iscdi=true