Loading…

An all-in-one nanoparticle for overcoming drug resistance: doxorubicin and elacridar co-loaded folate receptor targeted PLGA/MSN hybrid nanoparticles

Overexpression of permeability-glycoprotein (P-gp) transporter leads to multidrug resistance (MDR) through cellular exclusion of chemotherapeutics. Co-administration of P-gp inhibitors and chemotherapeutics is a promising approach for improving the efficacy of therapy. Nevertheless, problems in phar...

Full description

Saved in:
Bibliographic Details
Published in:Journal of drug targeting 2024-11, Vol.32 (9), p.1101-1110
Main Authors: Tonbul, Hayrettin, Şahin, Adem, Öztürk, Süleyman Can, Ultav, Gözde, Tavukçuoğlu, Ece, Akbaş, Sedenay, Aktaş, Yeşim, Esendağlı, Güneş, Çapan, Yılmaz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Overexpression of permeability-glycoprotein (P-gp) transporter leads to multidrug resistance (MDR) through cellular exclusion of chemotherapeutics. Co-administration of P-gp inhibitors and chemotherapeutics is a promising approach for improving the efficacy of therapy. Nevertheless, problems in pharmacokinetics, toxicity and solubility limit the application of P-gp inhibitors. Herein, we developed a novel all-in-one hybrid nanoparticle system to overcome MDR in doxorubicin (DOX)-resistant breast cancer. First, folic acid-modified DOX-loaded mesoporous silica nanoparticles (MSNs) were prepared and then loaded into PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles along with a P-gp inhibitor, elacridar. This hybrid nanoparticle system had high drug loading capacity, enabled both passive and active targeting of tumour tissues, and exhibited sequential and pH-triggered release of drugs. and studies in DOX-resistant breast cancer demonstrated the ability of the hybrid nanoparticles to reverse P-gp-mediated drug resistance. The nanoparticles were efficiently taken up by the breast cancer cells and delivered elacridar, . Biodistribution studies demonstrated substantial accumulation of the folate receptor-targeted PLGA/MSN hybrid nanoparticles in tumour-bearing mice. Moreover, deceleration of the tumour growth was remarkable in the animals administered with the DOX and elacridar co-loaded hybrid nanoparticles when compared to those treated with the marketed liposomal DOX (Caelyx ) or its combination with elacridar.
ISSN:1061-186X
1029-2330
1029-2330
DOI:10.1080/1061186X.2024.2374034