Loading…

Insights into the Acidic Site in Manganese Oxide in Terms of the Sulfur and Water Tolerance of Low-Temperature NH3 Selective Catalytic Reduction

A critical constraint impeding the utilization of Mn-based oxide catalysts in NH3 selective catalytic reduction (NH3-SCR) is their inadequate resistance to water and sulfur. This vulnerability primarily arises from the propensity of SO2 to bind to the acidic site in manganese oxide, resulting in the...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2024-07, Vol.40 (28), p.14504-14514
Main Authors: Li, Shengchen, Zhang, Bingzhen, Yang, Yanping, Zhu, Fangyu, Zhao, Dan, Shi, Shunli, Wang, Shuhua, Ding, Shunmin, Chen, Chao
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14514
container_issue 28
container_start_page 14504
container_title Langmuir
container_volume 40
creator Li, Shengchen
Zhang, Bingzhen
Yang, Yanping
Zhu, Fangyu
Zhao, Dan
Shi, Shunli
Wang, Shuhua
Ding, Shunmin
Chen, Chao
description A critical constraint impeding the utilization of Mn-based oxide catalysts in NH3 selective catalytic reduction (NH3-SCR) is their inadequate resistance to water and sulfur. This vulnerability primarily arises from the propensity of SO2 to bind to the acidic site in manganese oxide, resulting in the formation of metal sulfate and leading to the irreversible deactivation of the catalyst. Therefore, gaining a comprehensive understanding of the detrimental impact of SO2 on the acidic sites and elucidating the underlying mechanism of this toxicity are of paramount importance for the effective application of Mn-based catalysts in NH3-SCR. Herein, we strategically modulate the acidity of the manganese oxide catalyst surface through the incorporation of Ce and Nb. Comprehensive analyses, including thermogravimetry, NH3 temperature-programmed desorption, in situ diffused reflectance infrared Fourier transform spectroscopy, and density functional theory calculations, reveal that SO2 exhibits a propensity for adsorption at strongly acidic sites. This mechanistic understanding underscores the pivotal role of surface acidity in governing the sulfur resistance of manganese oxide.
doi_str_mv 10.1021/acs.langmuir.4c01289
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3074725952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074725952</sourcerecordid><originalsourceid>FETCH-LOGICAL-a159t-facd8ba5109dc2364a3abced6d53d9c83908d7374765050fa7727e370128165d3</originalsourceid><addsrcrecordid>eNo1kF1PwjAUQBujiYj-Ax_66MuwXdd1eyREhQQlkRkfl9LeQclYce38-Bf-ZDvAp5ucnNx7cxC6pWRESUzvpXKjWjbrXWfaUaIIjbP8DA0oj0nEs1icowERCYtEkrJLdOXclhCSsyQfoN9Z48x64x02jbfYbwCPldFG4aXxECB-DotlAw7w4tvoAyqg3Tlsq4O-7Oqqa7FsNH6XHlpc2Bpa2Sjojbn9igrY7QPxXQv4ZcrwEmpQ3nwCnkgv6x8frr2C7gKzzTW6qGTt4OY0h-jt8aGYTKP54mk2Gc8jSXnuo0oqna0kpyTXKmZpIplcKdCp5kznKmM5ybRgIhEpJ5xUUohYABN9G5pyzYbo7rh339qPDpwvd8YpqENHsJ0rWSgmYp7zOKjkqIbO5dZ2bRMeKykp-_hlD__jl6f47A-OwHxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074725952</pqid></control><display><type>article</type><title>Insights into the Acidic Site in Manganese Oxide in Terms of the Sulfur and Water Tolerance of Low-Temperature NH3 Selective Catalytic Reduction</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Shengchen ; Zhang, Bingzhen ; Yang, Yanping ; Zhu, Fangyu ; Zhao, Dan ; Shi, Shunli ; Wang, Shuhua ; Ding, Shunmin ; Chen, Chao</creator><creatorcontrib>Li, Shengchen ; Zhang, Bingzhen ; Yang, Yanping ; Zhu, Fangyu ; Zhao, Dan ; Shi, Shunli ; Wang, Shuhua ; Ding, Shunmin ; Chen, Chao</creatorcontrib><description>A critical constraint impeding the utilization of Mn-based oxide catalysts in NH3 selective catalytic reduction (NH3-SCR) is their inadequate resistance to water and sulfur. This vulnerability primarily arises from the propensity of SO2 to bind to the acidic site in manganese oxide, resulting in the formation of metal sulfate and leading to the irreversible deactivation of the catalyst. Therefore, gaining a comprehensive understanding of the detrimental impact of SO2 on the acidic sites and elucidating the underlying mechanism of this toxicity are of paramount importance for the effective application of Mn-based catalysts in NH3-SCR. Herein, we strategically modulate the acidity of the manganese oxide catalyst surface through the incorporation of Ce and Nb. Comprehensive analyses, including thermogravimetry, NH3 temperature-programmed desorption, in situ diffused reflectance infrared Fourier transform spectroscopy, and density functional theory calculations, reveal that SO2 exhibits a propensity for adsorption at strongly acidic sites. This mechanistic understanding underscores the pivotal role of surface acidity in governing the sulfur resistance of manganese oxide.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c01289</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2024-07, Vol.40 (28), p.14504-14514</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0001-6279-5369 ; 0000-0001-5618-9795 ; 0000-0002-0913-0544 ; 0009-0005-3319-7940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Shengchen</creatorcontrib><creatorcontrib>Zhang, Bingzhen</creatorcontrib><creatorcontrib>Yang, Yanping</creatorcontrib><creatorcontrib>Zhu, Fangyu</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Shi, Shunli</creatorcontrib><creatorcontrib>Wang, Shuhua</creatorcontrib><creatorcontrib>Ding, Shunmin</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><title>Insights into the Acidic Site in Manganese Oxide in Terms of the Sulfur and Water Tolerance of Low-Temperature NH3 Selective Catalytic Reduction</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>A critical constraint impeding the utilization of Mn-based oxide catalysts in NH3 selective catalytic reduction (NH3-SCR) is their inadequate resistance to water and sulfur. This vulnerability primarily arises from the propensity of SO2 to bind to the acidic site in manganese oxide, resulting in the formation of metal sulfate and leading to the irreversible deactivation of the catalyst. Therefore, gaining a comprehensive understanding of the detrimental impact of SO2 on the acidic sites and elucidating the underlying mechanism of this toxicity are of paramount importance for the effective application of Mn-based catalysts in NH3-SCR. Herein, we strategically modulate the acidity of the manganese oxide catalyst surface through the incorporation of Ce and Nb. Comprehensive analyses, including thermogravimetry, NH3 temperature-programmed desorption, in situ diffused reflectance infrared Fourier transform spectroscopy, and density functional theory calculations, reveal that SO2 exhibits a propensity for adsorption at strongly acidic sites. This mechanistic understanding underscores the pivotal role of surface acidity in governing the sulfur resistance of manganese oxide.</description><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1kF1PwjAUQBujiYj-Ax_66MuwXdd1eyREhQQlkRkfl9LeQclYce38-Bf-ZDvAp5ucnNx7cxC6pWRESUzvpXKjWjbrXWfaUaIIjbP8DA0oj0nEs1icowERCYtEkrJLdOXclhCSsyQfoN9Z48x64x02jbfYbwCPldFG4aXxECB-DotlAw7w4tvoAyqg3Tlsq4O-7Oqqa7FsNH6XHlpc2Bpa2Sjojbn9igrY7QPxXQv4ZcrwEmpQ3nwCnkgv6x8frr2C7gKzzTW6qGTt4OY0h-jt8aGYTKP54mk2Gc8jSXnuo0oqna0kpyTXKmZpIplcKdCp5kznKmM5ybRgIhEpJ5xUUohYABN9G5pyzYbo7rh339qPDpwvd8YpqENHsJ0rWSgmYp7zOKjkqIbO5dZ2bRMeKykp-_hlD__jl6f47A-OwHxo</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Li, Shengchen</creator><creator>Zhang, Bingzhen</creator><creator>Yang, Yanping</creator><creator>Zhu, Fangyu</creator><creator>Zhao, Dan</creator><creator>Shi, Shunli</creator><creator>Wang, Shuhua</creator><creator>Ding, Shunmin</creator><creator>Chen, Chao</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-6279-5369</orcidid><orcidid>https://orcid.org/0000-0001-5618-9795</orcidid><orcidid>https://orcid.org/0000-0002-0913-0544</orcidid><orcidid>https://orcid.org/0009-0005-3319-7940</orcidid></search><sort><creationdate>20240716</creationdate><title>Insights into the Acidic Site in Manganese Oxide in Terms of the Sulfur and Water Tolerance of Low-Temperature NH3 Selective Catalytic Reduction</title><author>Li, Shengchen ; Zhang, Bingzhen ; Yang, Yanping ; Zhu, Fangyu ; Zhao, Dan ; Shi, Shunli ; Wang, Shuhua ; Ding, Shunmin ; Chen, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a159t-facd8ba5109dc2364a3abced6d53d9c83908d7374765050fa7727e370128165d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shengchen</creatorcontrib><creatorcontrib>Zhang, Bingzhen</creatorcontrib><creatorcontrib>Yang, Yanping</creatorcontrib><creatorcontrib>Zhu, Fangyu</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Shi, Shunli</creatorcontrib><creatorcontrib>Wang, Shuhua</creatorcontrib><creatorcontrib>Ding, Shunmin</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shengchen</au><au>Zhang, Bingzhen</au><au>Yang, Yanping</au><au>Zhu, Fangyu</au><au>Zhao, Dan</au><au>Shi, Shunli</au><au>Wang, Shuhua</au><au>Ding, Shunmin</au><au>Chen, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the Acidic Site in Manganese Oxide in Terms of the Sulfur and Water Tolerance of Low-Temperature NH3 Selective Catalytic Reduction</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-07-16</date><risdate>2024</risdate><volume>40</volume><issue>28</issue><spage>14504</spage><epage>14514</epage><pages>14504-14514</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>A critical constraint impeding the utilization of Mn-based oxide catalysts in NH3 selective catalytic reduction (NH3-SCR) is their inadequate resistance to water and sulfur. This vulnerability primarily arises from the propensity of SO2 to bind to the acidic site in manganese oxide, resulting in the formation of metal sulfate and leading to the irreversible deactivation of the catalyst. Therefore, gaining a comprehensive understanding of the detrimental impact of SO2 on the acidic sites and elucidating the underlying mechanism of this toxicity are of paramount importance for the effective application of Mn-based catalysts in NH3-SCR. Herein, we strategically modulate the acidity of the manganese oxide catalyst surface through the incorporation of Ce and Nb. Comprehensive analyses, including thermogravimetry, NH3 temperature-programmed desorption, in situ diffused reflectance infrared Fourier transform spectroscopy, and density functional theory calculations, reveal that SO2 exhibits a propensity for adsorption at strongly acidic sites. This mechanistic understanding underscores the pivotal role of surface acidity in governing the sulfur resistance of manganese oxide.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.4c01289</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0001-6279-5369</orcidid><orcidid>https://orcid.org/0000-0001-5618-9795</orcidid><orcidid>https://orcid.org/0000-0002-0913-0544</orcidid><orcidid>https://orcid.org/0009-0005-3319-7940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2024-07, Vol.40 (28), p.14504-14514
issn 0743-7463
1520-5827
1520-5827
language eng
recordid cdi_proquest_miscellaneous_3074725952
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Insights into the Acidic Site in Manganese Oxide in Terms of the Sulfur and Water Tolerance of Low-Temperature NH3 Selective Catalytic Reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20Acidic%20Site%20in%20Manganese%20Oxide%20in%20Terms%20of%20the%20Sulfur%20and%20Water%20Tolerance%20of%20Low-Temperature%20NH3%20Selective%20Catalytic%20Reduction&rft.jtitle=Langmuir&rft.au=Li,%20Shengchen&rft.date=2024-07-16&rft.volume=40&rft.issue=28&rft.spage=14504&rft.epage=14514&rft.pages=14504-14514&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c01289&rft_dat=%3Cproquest_acs_j%3E3074725952%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a159t-facd8ba5109dc2364a3abced6d53d9c83908d7374765050fa7727e370128165d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3074725952&rft_id=info:pmid/&rfr_iscdi=true