Loading…
High‐Performance Bifunctional Electrocatalysts for Flexible and Rechargeable Zn–Air Batteries: Recent Advances
Flexible rechargeable Zn–air batteries (FZABs) exhibit high energy density, ultra‐thin, lightweight, green, and safe features, and are considered as one of the ideal power sources for flexible wearable electronics. However, the slow and high overpotential oxygen reaction at the air cathode has becom...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.20 (43), p.e2402761-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Flexible rechargeable Zn–air batteries (FZABs) exhibit high energy density, ultra‐thin, lightweight, green, and safe features, and are considered as one of the ideal power sources for flexible wearable electronics. However, the slow and high overpotential oxygen reaction at the air cathode has become one of the key factors restricting the development of FZABs. The improvement of activity and stability of bifunctional catalysts has become a top priority. At the same time, FZABs should maintain the battery performance under different bending and twisting conditions, and the design of the overall structure of FZABs is also important. Based on the understanding of the three typical configurations and working principles of FZABs, this work highlights two common strategies for applying bifunctional catalysts to FZABs: 1) powder‐based flexible air cathode and 2) flexible self‐supported air cathode. It summarizes the recent advances in bifunctional oxygen electrocatalysts and explores the various types of catalyst structures as well as the related mechanistic understanding. Based on the latest catalyst research advances, this paper introduces and discusses various structure modulation strategies and expects to guide the synthesis and preparation of efficient bifunctional catalysts. Finally, the current status and challenges of bifunctional catalyst research in FZABs are summarized.
It is necessary and challenging to explore high‐performance bifunctional electrocatalysts. In flexible rechargeable Zn–air batteries (FZABs), the bifunctional electrocatalysts are widely utilized in the form of powder‐based flexible air cathodes and flexible self‐supporting air cathodes. Various nanostructures, such as interfaces, frameworks, core–shell structures, and array structures are designed to contribute to the realization of high performance of FZABs. |
---|---|
ISSN: | 1613-6810 1613-6829 1613-6829 |
DOI: | 10.1002/smll.202402761 |