Loading…

Towards accurate abdominal tumor segmentation: A 2D model with Position-Aware and Key Slice Feature Sharing

Abdominal tumor segmentation is a crucial yet challenging step during the screening and diagnosis of tumors. While 3D segmentation models provide powerful performance, they demand substantial computational resources. Additionally, in 3D data, tumors often represent a small portion, leading to imbala...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2024-09, Vol.179, p.108743, Article 108743
Main Authors: He, Jiezhou, Luo, Zhiming, Lian, Sheng, Su, Songzhi, Li, Shaozi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1926-948866cefc6711d95207fbc9378bffb4783d2d4c1708038fecad497fb198b3aa3
container_end_page
container_issue
container_start_page 108743
container_title Computers in biology and medicine
container_volume 179
creator He, Jiezhou
Luo, Zhiming
Lian, Sheng
Su, Songzhi
Li, Shaozi
description Abdominal tumor segmentation is a crucial yet challenging step during the screening and diagnosis of tumors. While 3D segmentation models provide powerful performance, they demand substantial computational resources. Additionally, in 3D data, tumors often represent a small portion, leading to imbalanced data and potentially overlooking crucial information. Conversely, 2D segmentation models have a lightweight structure, but disregard the inter-slice correlation, risking the loss of tumor in edge slices. To address these challenges, this paper proposes a novel Position-Aware and Key Slice Feature Sharing 2D tumor segmentation model (PAKS-Net). Leveraging the Swin-Transformer, we effectively model the global features within each slice, facilitating essential information extraction. Furthermore, we introduce a Position-Aware module to capture the spatial relationship between tumors and their corresponding organs, mitigating noise and interference from surrounding organ tissues. To enhance the edge slice segmentation accuracy, we employ key slices to assist in the segmentation of other slices to prioritize tumor regions. Through extensive experiments on three abdominal tumor segmentation CT datasets and a lung tumor segmentation CT dataset, PAKS-Net demonstrates superior performance, reaching 0.893, 0.769, 0.598 and 0.738 tumor DSC on the KiTS19, LiTS17, pancreas and LOTUS datasets, surpassing 3D segmentation models, while remaining computationally efficient with fewer parameters. •PAKS-Net: a 2D model for abdominal tumor segmentation in CT images, superior to 3D models.•Proposes KSFS, a module enhancing edge slice segmentation in 2D models by using adjacent context.•Proposes a PA module using positional correlation in CT images to improve tumor segmentation accuracy.
doi_str_mv 10.1016/j.compbiomed.2024.108743
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3076017478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001048252400828X</els_id><sourcerecordid>3091267974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1926-948866cefc6711d95207fbc9378bffb4783d2d4c1708038fecad497fb198b3aa3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EosvCX0CWuHDJ1l_rD25LS6GiEkgtZ8uxJ62XJF7shKr_HkfbCokLp5FmnvcdzbwIYUo2lFB5ut_4NBzamAYIG0aYqG2tBH-GVlQr05AtF8_RihBKGqHZ9gS9KmVPCBGEk5fohGsjBRNyhX7epHuXQ8HO-zm7CbBrQxri6Ho8zUPKuMDtAOPkppjGD3iH2TkeUoAe38fpDn9PJS6TZldtqngM-Cs84Os-esAX4Ka5dq_vXI7j7Wv0onN9gTePdY1-XHy6OfvSXH37fHm2u2o8NUw2RmgtpYfOS0VpMFtGVNd6w5Vuu64VSvPAgvBUEU247sC7IExFqNEtd46v0fuj7yGnXzOUyQ6xeOh7N0Kai-VESULVYrRG7_5B92nO9fiFMpRJZepb10gfKZ9TKRk6e8hxcPnBUmKXQOze_g3ELoHYYyBV-vZxwdwusyfhUwIV-HgEoH7kd4Rsi48weggxg59sSPH_W_4AxqqguQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091267974</pqid></control><display><type>article</type><title>Towards accurate abdominal tumor segmentation: A 2D model with Position-Aware and Key Slice Feature Sharing</title><source>Elsevier</source><creator>He, Jiezhou ; Luo, Zhiming ; Lian, Sheng ; Su, Songzhi ; Li, Shaozi</creator><creatorcontrib>He, Jiezhou ; Luo, Zhiming ; Lian, Sheng ; Su, Songzhi ; Li, Shaozi</creatorcontrib><description>Abdominal tumor segmentation is a crucial yet challenging step during the screening and diagnosis of tumors. While 3D segmentation models provide powerful performance, they demand substantial computational resources. Additionally, in 3D data, tumors often represent a small portion, leading to imbalanced data and potentially overlooking crucial information. Conversely, 2D segmentation models have a lightweight structure, but disregard the inter-slice correlation, risking the loss of tumor in edge slices. To address these challenges, this paper proposes a novel Position-Aware and Key Slice Feature Sharing 2D tumor segmentation model (PAKS-Net). Leveraging the Swin-Transformer, we effectively model the global features within each slice, facilitating essential information extraction. Furthermore, we introduce a Position-Aware module to capture the spatial relationship between tumors and their corresponding organs, mitigating noise and interference from surrounding organ tissues. To enhance the edge slice segmentation accuracy, we employ key slices to assist in the segmentation of other slices to prioritize tumor regions. Through extensive experiments on three abdominal tumor segmentation CT datasets and a lung tumor segmentation CT dataset, PAKS-Net demonstrates superior performance, reaching 0.893, 0.769, 0.598 and 0.738 tumor DSC on the KiTS19, LiTS17, pancreas and LOTUS datasets, surpassing 3D segmentation models, while remaining computationally efficient with fewer parameters. •PAKS-Net: a 2D model for abdominal tumor segmentation in CT images, superior to 3D models.•Proposes KSFS, a module enhancing edge slice segmentation in 2D models by using adjacent context.•Proposes a PA module using positional correlation in CT images to improve tumor segmentation accuracy.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108743</identifier><identifier>PMID: 38964246</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Abdomen ; Abdominal Neoplasms - diagnostic imaging ; Abdominal tumor segmentation ; Algorithms ; Datasets ; Deep learning ; Humans ; Imaging, Three-Dimensional - methods ; Information retrieval ; Key slices ; Position-Aware ; Segmentation ; Tomography, X-Ray Computed - methods ; Transformer ; Tumors ; Two dimensional models</subject><ispartof>Computers in biology and medicine, 2024-09, Vol.179, p.108743, Article 108743</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier Limited Sep 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1926-948866cefc6711d95207fbc9378bffb4783d2d4c1708038fecad497fb198b3aa3</cites><orcidid>0000-0002-3428-3665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38964246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Jiezhou</creatorcontrib><creatorcontrib>Luo, Zhiming</creatorcontrib><creatorcontrib>Lian, Sheng</creatorcontrib><creatorcontrib>Su, Songzhi</creatorcontrib><creatorcontrib>Li, Shaozi</creatorcontrib><title>Towards accurate abdominal tumor segmentation: A 2D model with Position-Aware and Key Slice Feature Sharing</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abdominal tumor segmentation is a crucial yet challenging step during the screening and diagnosis of tumors. While 3D segmentation models provide powerful performance, they demand substantial computational resources. Additionally, in 3D data, tumors often represent a small portion, leading to imbalanced data and potentially overlooking crucial information. Conversely, 2D segmentation models have a lightweight structure, but disregard the inter-slice correlation, risking the loss of tumor in edge slices. To address these challenges, this paper proposes a novel Position-Aware and Key Slice Feature Sharing 2D tumor segmentation model (PAKS-Net). Leveraging the Swin-Transformer, we effectively model the global features within each slice, facilitating essential information extraction. Furthermore, we introduce a Position-Aware module to capture the spatial relationship between tumors and their corresponding organs, mitigating noise and interference from surrounding organ tissues. To enhance the edge slice segmentation accuracy, we employ key slices to assist in the segmentation of other slices to prioritize tumor regions. Through extensive experiments on three abdominal tumor segmentation CT datasets and a lung tumor segmentation CT dataset, PAKS-Net demonstrates superior performance, reaching 0.893, 0.769, 0.598 and 0.738 tumor DSC on the KiTS19, LiTS17, pancreas and LOTUS datasets, surpassing 3D segmentation models, while remaining computationally efficient with fewer parameters. •PAKS-Net: a 2D model for abdominal tumor segmentation in CT images, superior to 3D models.•Proposes KSFS, a module enhancing edge slice segmentation in 2D models by using adjacent context.•Proposes a PA module using positional correlation in CT images to improve tumor segmentation accuracy.</description><subject>Abdomen</subject><subject>Abdominal Neoplasms - diagnostic imaging</subject><subject>Abdominal tumor segmentation</subject><subject>Algorithms</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information retrieval</subject><subject>Key slices</subject><subject>Position-Aware</subject><subject>Segmentation</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Transformer</subject><subject>Tumors</subject><subject>Two dimensional models</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EosvCX0CWuHDJ1l_rD25LS6GiEkgtZ8uxJ62XJF7shKr_HkfbCokLp5FmnvcdzbwIYUo2lFB5ut_4NBzamAYIG0aYqG2tBH-GVlQr05AtF8_RihBKGqHZ9gS9KmVPCBGEk5fohGsjBRNyhX7epHuXQ8HO-zm7CbBrQxri6Ho8zUPKuMDtAOPkppjGD3iH2TkeUoAe38fpDn9PJS6TZldtqngM-Cs84Os-esAX4Ka5dq_vXI7j7Wv0onN9gTePdY1-XHy6OfvSXH37fHm2u2o8NUw2RmgtpYfOS0VpMFtGVNd6w5Vuu64VSvPAgvBUEU247sC7IExFqNEtd46v0fuj7yGnXzOUyQ6xeOh7N0Kai-VESULVYrRG7_5B92nO9fiFMpRJZepb10gfKZ9TKRk6e8hxcPnBUmKXQOze_g3ELoHYYyBV-vZxwdwusyfhUwIV-HgEoH7kd4Rsi48weggxg59sSPH_W_4AxqqguQ</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>He, Jiezhou</creator><creator>Luo, Zhiming</creator><creator>Lian, Sheng</creator><creator>Su, Songzhi</creator><creator>Li, Shaozi</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3428-3665</orcidid></search><sort><creationdate>202409</creationdate><title>Towards accurate abdominal tumor segmentation: A 2D model with Position-Aware and Key Slice Feature Sharing</title><author>He, Jiezhou ; Luo, Zhiming ; Lian, Sheng ; Su, Songzhi ; Li, Shaozi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1926-948866cefc6711d95207fbc9378bffb4783d2d4c1708038fecad497fb198b3aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abdomen</topic><topic>Abdominal Neoplasms - diagnostic imaging</topic><topic>Abdominal tumor segmentation</topic><topic>Algorithms</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information retrieval</topic><topic>Key slices</topic><topic>Position-Aware</topic><topic>Segmentation</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Transformer</topic><topic>Tumors</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Jiezhou</creatorcontrib><creatorcontrib>Luo, Zhiming</creatorcontrib><creatorcontrib>Lian, Sheng</creatorcontrib><creatorcontrib>Su, Songzhi</creatorcontrib><creatorcontrib>Li, Shaozi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jiezhou</au><au>Luo, Zhiming</au><au>Lian, Sheng</au><au>Su, Songzhi</au><au>Li, Shaozi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards accurate abdominal tumor segmentation: A 2D model with Position-Aware and Key Slice Feature Sharing</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-09</date><risdate>2024</risdate><volume>179</volume><spage>108743</spage><pages>108743-</pages><artnum>108743</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Abdominal tumor segmentation is a crucial yet challenging step during the screening and diagnosis of tumors. While 3D segmentation models provide powerful performance, they demand substantial computational resources. Additionally, in 3D data, tumors often represent a small portion, leading to imbalanced data and potentially overlooking crucial information. Conversely, 2D segmentation models have a lightweight structure, but disregard the inter-slice correlation, risking the loss of tumor in edge slices. To address these challenges, this paper proposes a novel Position-Aware and Key Slice Feature Sharing 2D tumor segmentation model (PAKS-Net). Leveraging the Swin-Transformer, we effectively model the global features within each slice, facilitating essential information extraction. Furthermore, we introduce a Position-Aware module to capture the spatial relationship between tumors and their corresponding organs, mitigating noise and interference from surrounding organ tissues. To enhance the edge slice segmentation accuracy, we employ key slices to assist in the segmentation of other slices to prioritize tumor regions. Through extensive experiments on three abdominal tumor segmentation CT datasets and a lung tumor segmentation CT dataset, PAKS-Net demonstrates superior performance, reaching 0.893, 0.769, 0.598 and 0.738 tumor DSC on the KiTS19, LiTS17, pancreas and LOTUS datasets, surpassing 3D segmentation models, while remaining computationally efficient with fewer parameters. •PAKS-Net: a 2D model for abdominal tumor segmentation in CT images, superior to 3D models.•Proposes KSFS, a module enhancing edge slice segmentation in 2D models by using adjacent context.•Proposes a PA module using positional correlation in CT images to improve tumor segmentation accuracy.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38964246</pmid><doi>10.1016/j.compbiomed.2024.108743</doi><orcidid>https://orcid.org/0000-0002-3428-3665</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-09, Vol.179, p.108743, Article 108743
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3076017478
source Elsevier
subjects Abdomen
Abdominal Neoplasms - diagnostic imaging
Abdominal tumor segmentation
Algorithms
Datasets
Deep learning
Humans
Imaging, Three-Dimensional - methods
Information retrieval
Key slices
Position-Aware
Segmentation
Tomography, X-Ray Computed - methods
Transformer
Tumors
Two dimensional models
title Towards accurate abdominal tumor segmentation: A 2D model with Position-Aware and Key Slice Feature Sharing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20accurate%20abdominal%20tumor%20segmentation:%20A%202D%20model%20with%20Position-Aware%20and%20Key%20Slice%20Feature%20Sharing&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=He,%20Jiezhou&rft.date=2024-09&rft.volume=179&rft.spage=108743&rft.pages=108743-&rft.artnum=108743&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108743&rft_dat=%3Cproquest_cross%3E3091267974%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1926-948866cefc6711d95207fbc9378bffb4783d2d4c1708038fecad497fb198b3aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3091267974&rft_id=info:pmid/38964246&rfr_iscdi=true