Loading…

Evolutionary Strategies Enable Systematic and Reliable Uncertainty Quantification: A Proof-of-Concept Pilot Study on Resting-State Functional MRI Language Lateralization

Reliable and trustworthy artificial intelligence (AI), particularly in high-stake medical diagnoses, necessitates effective uncertainty quantification (UQ). Existing UQ methods using model ensembles often introduce invalid variability or computational complexity, rendering them impractical and ineff...

Full description

Saved in:
Bibliographic Details
Published in:Journal of imaging informatics in medicine 2024-07
Main Authors: Stember, Joseph N, Dishner, Katharine, Jenabi, Mehrnaz, Pasquini, Luca, K Peck, Kyung, Saha, Atin, Shah, Akash, O'Malley, Bernard, Ilica, Ahmet Turan, Kelly, Lori, Arevalo-Perez, Julio, Hatzoglou, Vaios, Holodny, Andrei, Shalu, Hrithwik
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c184t-b7a9733294a81511c187eb27c515b531068f6d3be10ae8f94e54322dee6012423
container_end_page
container_issue
container_start_page
container_title Journal of imaging informatics in medicine
container_volume
creator Stember, Joseph N
Dishner, Katharine
Jenabi, Mehrnaz
Pasquini, Luca
K Peck, Kyung
Saha, Atin
Shah, Akash
O'Malley, Bernard
Ilica, Ahmet Turan
Kelly, Lori
Arevalo-Perez, Julio
Hatzoglou, Vaios
Holodny, Andrei
Shalu, Hrithwik
description Reliable and trustworthy artificial intelligence (AI), particularly in high-stake medical diagnoses, necessitates effective uncertainty quantification (UQ). Existing UQ methods using model ensembles often introduce invalid variability or computational complexity, rendering them impractical and ineffective in clinical workflow. We propose a UQ approach based on deep neuroevolution (DNE), a data-efficient optimization strategy. Our goal is to replicate trends observed in expert-based UQ. We focused on language lateralization maps from resting-state functional MRI (rs-fMRI). Fifty rs-fMRI maps were divided into training/testing (30:20) sets, representing two labels: "left-dominant" and "co-dominant." DNE facilitated acquiring an ensemble of 100 models with high training and testing set accuracy. Model uncertainty was derived from distribution entropies over the 100 model predictions. Expert reviewers provided user-based uncertainties for comparison. Model (epistemic) and user-based (aleatoric) uncertainties were consistent in the independently and identically distributed (IID) testing set, mainly indicating low uncertainty. In a mostly out-of-distribution (OOD) holdout set, both model and user-based entropies correlated but displayed a bimodal distribution, with one peak representing low and another high uncertainty. We also found a statistically significant positive correlation between epistemic and aleatoric uncertainties. DNE-based UQ effectively mirrored user-based uncertainties, particularly highlighting increased uncertainty in OOD images. We conclude that DNE-based UQ correlates with expert assessments, making it reliable for our use case and potentially for other radiology applications.
doi_str_mv 10.1007/s10278-024-01188-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3077188973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077188973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-b7a9733294a81511c187eb27c515b531068f6d3be10ae8f94e54322dee6012423</originalsourceid><addsrcrecordid>eNpNkdtqGzEQhkVpqIOTF-hF0WVvlOqwB23vgrFTg0OTOLkW2t1ZoyJLrqQtuG-Ut4x8SCkMzDDMfHP4EfrM6A2jtP4WGeW1JJQXhDImJak-oEveFJLwRoiP_8UTdB3jL0qpEEyIin5CEyEbSSteXKLX-R9vx2S802GP1ynoBBsDEc-dbi3g9T4m2OpkOqxdj5_AmmP-xXUQkjYu7fHjqF0yg-n0gfMd3-KH4P1Ass18rtsl_GCsTxk_9nvsXcbEZNyGrFMehxej644bWHz_tMQr7Taj3kAOEgRtzd8j9wpdDNpGuD77KXpZzJ9nP8jq591ydrsiHZNFIm2tm1qIfL2WrGQsZ2toed2VrGxLwWglh6oXLTCqQQ5NAWUhOO8BKsp4wcUUfT1xd8H_HvOiamtiB9ZqB36MStC6zv8-DJkifirtgo8xwKB2wWzzIxWj6qCSOqmkskrqqJKqctOXM39st9D_a3nXRLwBDGCPgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077188973</pqid></control><display><type>article</type><title>Evolutionary Strategies Enable Systematic and Reliable Uncertainty Quantification: A Proof-of-Concept Pilot Study on Resting-State Functional MRI Language Lateralization</title><source>Springer Link</source><source>PubMed Central</source><creator>Stember, Joseph N ; Dishner, Katharine ; Jenabi, Mehrnaz ; Pasquini, Luca ; K Peck, Kyung ; Saha, Atin ; Shah, Akash ; O'Malley, Bernard ; Ilica, Ahmet Turan ; Kelly, Lori ; Arevalo-Perez, Julio ; Hatzoglou, Vaios ; Holodny, Andrei ; Shalu, Hrithwik</creator><creatorcontrib>Stember, Joseph N ; Dishner, Katharine ; Jenabi, Mehrnaz ; Pasquini, Luca ; K Peck, Kyung ; Saha, Atin ; Shah, Akash ; O'Malley, Bernard ; Ilica, Ahmet Turan ; Kelly, Lori ; Arevalo-Perez, Julio ; Hatzoglou, Vaios ; Holodny, Andrei ; Shalu, Hrithwik</creatorcontrib><description>Reliable and trustworthy artificial intelligence (AI), particularly in high-stake medical diagnoses, necessitates effective uncertainty quantification (UQ). Existing UQ methods using model ensembles often introduce invalid variability or computational complexity, rendering them impractical and ineffective in clinical workflow. We propose a UQ approach based on deep neuroevolution (DNE), a data-efficient optimization strategy. Our goal is to replicate trends observed in expert-based UQ. We focused on language lateralization maps from resting-state functional MRI (rs-fMRI). Fifty rs-fMRI maps were divided into training/testing (30:20) sets, representing two labels: "left-dominant" and "co-dominant." DNE facilitated acquiring an ensemble of 100 models with high training and testing set accuracy. Model uncertainty was derived from distribution entropies over the 100 model predictions. Expert reviewers provided user-based uncertainties for comparison. Model (epistemic) and user-based (aleatoric) uncertainties were consistent in the independently and identically distributed (IID) testing set, mainly indicating low uncertainty. In a mostly out-of-distribution (OOD) holdout set, both model and user-based entropies correlated but displayed a bimodal distribution, with one peak representing low and another high uncertainty. We also found a statistically significant positive correlation between epistemic and aleatoric uncertainties. DNE-based UQ effectively mirrored user-based uncertainties, particularly highlighting increased uncertainty in OOD images. We conclude that DNE-based UQ correlates with expert assessments, making it reliable for our use case and potentially for other radiology applications.</description><identifier>ISSN: 2948-2933</identifier><identifier>EISSN: 2948-2933</identifier><identifier>DOI: 10.1007/s10278-024-01188-6</identifier><identifier>PMID: 38980624</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Journal of imaging informatics in medicine, 2024-07</ispartof><rights>2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c184t-b7a9733294a81511c187eb27c515b531068f6d3be10ae8f94e54322dee6012423</cites><orcidid>0009-0004-2764-1411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38980624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stember, Joseph N</creatorcontrib><creatorcontrib>Dishner, Katharine</creatorcontrib><creatorcontrib>Jenabi, Mehrnaz</creatorcontrib><creatorcontrib>Pasquini, Luca</creatorcontrib><creatorcontrib>K Peck, Kyung</creatorcontrib><creatorcontrib>Saha, Atin</creatorcontrib><creatorcontrib>Shah, Akash</creatorcontrib><creatorcontrib>O'Malley, Bernard</creatorcontrib><creatorcontrib>Ilica, Ahmet Turan</creatorcontrib><creatorcontrib>Kelly, Lori</creatorcontrib><creatorcontrib>Arevalo-Perez, Julio</creatorcontrib><creatorcontrib>Hatzoglou, Vaios</creatorcontrib><creatorcontrib>Holodny, Andrei</creatorcontrib><creatorcontrib>Shalu, Hrithwik</creatorcontrib><title>Evolutionary Strategies Enable Systematic and Reliable Uncertainty Quantification: A Proof-of-Concept Pilot Study on Resting-State Functional MRI Language Lateralization</title><title>Journal of imaging informatics in medicine</title><addtitle>J Imaging Inform Med</addtitle><description>Reliable and trustworthy artificial intelligence (AI), particularly in high-stake medical diagnoses, necessitates effective uncertainty quantification (UQ). Existing UQ methods using model ensembles often introduce invalid variability or computational complexity, rendering them impractical and ineffective in clinical workflow. We propose a UQ approach based on deep neuroevolution (DNE), a data-efficient optimization strategy. Our goal is to replicate trends observed in expert-based UQ. We focused on language lateralization maps from resting-state functional MRI (rs-fMRI). Fifty rs-fMRI maps were divided into training/testing (30:20) sets, representing two labels: "left-dominant" and "co-dominant." DNE facilitated acquiring an ensemble of 100 models with high training and testing set accuracy. Model uncertainty was derived from distribution entropies over the 100 model predictions. Expert reviewers provided user-based uncertainties for comparison. Model (epistemic) and user-based (aleatoric) uncertainties were consistent in the independently and identically distributed (IID) testing set, mainly indicating low uncertainty. In a mostly out-of-distribution (OOD) holdout set, both model and user-based entropies correlated but displayed a bimodal distribution, with one peak representing low and another high uncertainty. We also found a statistically significant positive correlation between epistemic and aleatoric uncertainties. DNE-based UQ effectively mirrored user-based uncertainties, particularly highlighting increased uncertainty in OOD images. We conclude that DNE-based UQ correlates with expert assessments, making it reliable for our use case and potentially for other radiology applications.</description><issn>2948-2933</issn><issn>2948-2933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkdtqGzEQhkVpqIOTF-hF0WVvlOqwB23vgrFTg0OTOLkW2t1ZoyJLrqQtuG-Ut4x8SCkMzDDMfHP4EfrM6A2jtP4WGeW1JJQXhDImJak-oEveFJLwRoiP_8UTdB3jL0qpEEyIin5CEyEbSSteXKLX-R9vx2S802GP1ynoBBsDEc-dbi3g9T4m2OpkOqxdj5_AmmP-xXUQkjYu7fHjqF0yg-n0gfMd3-KH4P1Ass18rtsl_GCsTxk_9nvsXcbEZNyGrFMehxej644bWHz_tMQr7Taj3kAOEgRtzd8j9wpdDNpGuD77KXpZzJ9nP8jq591ydrsiHZNFIm2tm1qIfL2WrGQsZ2toed2VrGxLwWglh6oXLTCqQQ5NAWUhOO8BKsp4wcUUfT1xd8H_HvOiamtiB9ZqB36MStC6zv8-DJkifirtgo8xwKB2wWzzIxWj6qCSOqmkskrqqJKqctOXM39st9D_a3nXRLwBDGCPgQ</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>Stember, Joseph N</creator><creator>Dishner, Katharine</creator><creator>Jenabi, Mehrnaz</creator><creator>Pasquini, Luca</creator><creator>K Peck, Kyung</creator><creator>Saha, Atin</creator><creator>Shah, Akash</creator><creator>O'Malley, Bernard</creator><creator>Ilica, Ahmet Turan</creator><creator>Kelly, Lori</creator><creator>Arevalo-Perez, Julio</creator><creator>Hatzoglou, Vaios</creator><creator>Holodny, Andrei</creator><creator>Shalu, Hrithwik</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-2764-1411</orcidid></search><sort><creationdate>20240709</creationdate><title>Evolutionary Strategies Enable Systematic and Reliable Uncertainty Quantification: A Proof-of-Concept Pilot Study on Resting-State Functional MRI Language Lateralization</title><author>Stember, Joseph N ; Dishner, Katharine ; Jenabi, Mehrnaz ; Pasquini, Luca ; K Peck, Kyung ; Saha, Atin ; Shah, Akash ; O'Malley, Bernard ; Ilica, Ahmet Turan ; Kelly, Lori ; Arevalo-Perez, Julio ; Hatzoglou, Vaios ; Holodny, Andrei ; Shalu, Hrithwik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-b7a9733294a81511c187eb27c515b531068f6d3be10ae8f94e54322dee6012423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stember, Joseph N</creatorcontrib><creatorcontrib>Dishner, Katharine</creatorcontrib><creatorcontrib>Jenabi, Mehrnaz</creatorcontrib><creatorcontrib>Pasquini, Luca</creatorcontrib><creatorcontrib>K Peck, Kyung</creatorcontrib><creatorcontrib>Saha, Atin</creatorcontrib><creatorcontrib>Shah, Akash</creatorcontrib><creatorcontrib>O'Malley, Bernard</creatorcontrib><creatorcontrib>Ilica, Ahmet Turan</creatorcontrib><creatorcontrib>Kelly, Lori</creatorcontrib><creatorcontrib>Arevalo-Perez, Julio</creatorcontrib><creatorcontrib>Hatzoglou, Vaios</creatorcontrib><creatorcontrib>Holodny, Andrei</creatorcontrib><creatorcontrib>Shalu, Hrithwik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of imaging informatics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stember, Joseph N</au><au>Dishner, Katharine</au><au>Jenabi, Mehrnaz</au><au>Pasquini, Luca</au><au>K Peck, Kyung</au><au>Saha, Atin</au><au>Shah, Akash</au><au>O'Malley, Bernard</au><au>Ilica, Ahmet Turan</au><au>Kelly, Lori</au><au>Arevalo-Perez, Julio</au><au>Hatzoglou, Vaios</au><au>Holodny, Andrei</au><au>Shalu, Hrithwik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Strategies Enable Systematic and Reliable Uncertainty Quantification: A Proof-of-Concept Pilot Study on Resting-State Functional MRI Language Lateralization</atitle><jtitle>Journal of imaging informatics in medicine</jtitle><addtitle>J Imaging Inform Med</addtitle><date>2024-07-09</date><risdate>2024</risdate><issn>2948-2933</issn><eissn>2948-2933</eissn><abstract>Reliable and trustworthy artificial intelligence (AI), particularly in high-stake medical diagnoses, necessitates effective uncertainty quantification (UQ). Existing UQ methods using model ensembles often introduce invalid variability or computational complexity, rendering them impractical and ineffective in clinical workflow. We propose a UQ approach based on deep neuroevolution (DNE), a data-efficient optimization strategy. Our goal is to replicate trends observed in expert-based UQ. We focused on language lateralization maps from resting-state functional MRI (rs-fMRI). Fifty rs-fMRI maps were divided into training/testing (30:20) sets, representing two labels: "left-dominant" and "co-dominant." DNE facilitated acquiring an ensemble of 100 models with high training and testing set accuracy. Model uncertainty was derived from distribution entropies over the 100 model predictions. Expert reviewers provided user-based uncertainties for comparison. Model (epistemic) and user-based (aleatoric) uncertainties were consistent in the independently and identically distributed (IID) testing set, mainly indicating low uncertainty. In a mostly out-of-distribution (OOD) holdout set, both model and user-based entropies correlated but displayed a bimodal distribution, with one peak representing low and another high uncertainty. We also found a statistically significant positive correlation between epistemic and aleatoric uncertainties. DNE-based UQ effectively mirrored user-based uncertainties, particularly highlighting increased uncertainty in OOD images. We conclude that DNE-based UQ correlates with expert assessments, making it reliable for our use case and potentially for other radiology applications.</abstract><cop>Switzerland</cop><pmid>38980624</pmid><doi>10.1007/s10278-024-01188-6</doi><orcidid>https://orcid.org/0009-0004-2764-1411</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2948-2933
ispartof Journal of imaging informatics in medicine, 2024-07
issn 2948-2933
2948-2933
language eng
recordid cdi_proquest_miscellaneous_3077188973
source Springer Link; PubMed Central
title Evolutionary Strategies Enable Systematic and Reliable Uncertainty Quantification: A Proof-of-Concept Pilot Study on Resting-State Functional MRI Language Lateralization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Strategies%20Enable%20Systematic%20and%20Reliable%20Uncertainty%20Quantification:%20A%20Proof-of-Concept%20Pilot%20Study%20on%20Resting-State%20Functional%20MRI%20Language%20Lateralization&rft.jtitle=Journal%20of%20imaging%20informatics%20in%20medicine&rft.au=Stember,%20Joseph%20N&rft.date=2024-07-09&rft.issn=2948-2933&rft.eissn=2948-2933&rft_id=info:doi/10.1007/s10278-024-01188-6&rft_dat=%3Cproquest_cross%3E3077188973%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c184t-b7a9733294a81511c187eb27c515b531068f6d3be10ae8f94e54322dee6012423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3077188973&rft_id=info:pmid/38980624&rfr_iscdi=true