Loading…
Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds
The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current rel...
Saved in:
Published in: | ACS applied materials & interfaces 2024-07, Vol.16 (29), p.38208-38220 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a215t-2e6a5c06e40143ad9d0460aa16e8b1654bc846561625036f89f0aa9379f64ae63 |
container_end_page | 38220 |
container_issue | 29 |
container_start_page | 38208 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Beckmann, Benedikt Pfeuffer, Lukas Lill, Johanna Eggert, Benedikt Koch, David Lavina, Barbara Zhao, Jiyong Toellner, Thomas Alp, Esen E. Ollefs, Katharina Skokov, Konstantin P. Wende, Heiko Gutfleisch, Oliver |
description | The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to −28 J (kg K)−1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials. |
doi_str_mv | 10.1021/acsami.4c05397 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3078719232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078719232</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-2e6a5c06e40143ad9d0460aa16e8b1654bc846561625036f89f0aa9379f64ae63</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK1ePUqOVUzd72SPGlorVBS15zDdbDQlydbdROi_NyW1Ny8zA_PMC_MgdEnwhGBK7kB7qIoJ11gwFR2hIVGchzEV9Pgwcz5AZ96vMZaMYnGKBixWCmMeDdHrc1s2hYbSukIHidtabW1Z1J_B0u_q3MDPNngDZ8IpuOYrmDljggWMZ-b2vbgmLHwAb7IgsdXGtnXmz9FJDqU3F_s-QsvZ9COZh4uXx6fkfhECJaIJqZEgNJaGY8IZZCrDXGIAIk28IlLwlY65FJJIKjCTeazybqtYpHLJwUg2QuM-d-Psd2t8k1aF16YsoTa29SnDURwRRRnt0EmPame9dyZPN66owG1TgtOdxbS3mO4tdgdX--x2VZnsgP9p64CbHugO07VtXd29-l_aLx-3ekA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078719232</pqid></control><display><type>article</type><title>Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Beckmann, Benedikt ; Pfeuffer, Lukas ; Lill, Johanna ; Eggert, Benedikt ; Koch, David ; Lavina, Barbara ; Zhao, Jiyong ; Toellner, Thomas ; Alp, Esen E. ; Ollefs, Katharina ; Skokov, Konstantin P. ; Wende, Heiko ; Gutfleisch, Oliver</creator><creatorcontrib>Beckmann, Benedikt ; Pfeuffer, Lukas ; Lill, Johanna ; Eggert, Benedikt ; Koch, David ; Lavina, Barbara ; Zhao, Jiyong ; Toellner, Thomas ; Alp, Esen E. ; Ollefs, Katharina ; Skokov, Konstantin P. ; Wende, Heiko ; Gutfleisch, Oliver</creatorcontrib><description>The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to −28 J (kg K)−1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c05397</identifier><identifier>PMID: 38990047</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials & interfaces, 2024-07, Vol.16 (29), p.38208-38220</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-2e6a5c06e40143ad9d0460aa16e8b1654bc846561625036f89f0aa9379f64ae63</cites><orcidid>0000-0001-7739-3541 ; 0000-0001-8395-3541 ; 0000-0003-4321-9021 ; 0000-0002-2232-1804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38990047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckmann, Benedikt</creatorcontrib><creatorcontrib>Pfeuffer, Lukas</creatorcontrib><creatorcontrib>Lill, Johanna</creatorcontrib><creatorcontrib>Eggert, Benedikt</creatorcontrib><creatorcontrib>Koch, David</creatorcontrib><creatorcontrib>Lavina, Barbara</creatorcontrib><creatorcontrib>Zhao, Jiyong</creatorcontrib><creatorcontrib>Toellner, Thomas</creatorcontrib><creatorcontrib>Alp, Esen E.</creatorcontrib><creatorcontrib>Ollefs, Katharina</creatorcontrib><creatorcontrib>Skokov, Konstantin P.</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Gutfleisch, Oliver</creatorcontrib><title>Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to −28 J (kg K)−1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRbK1ePUqOVUzd72SPGlorVBS15zDdbDQlydbdROi_NyW1Ny8zA_PMC_MgdEnwhGBK7kB7qIoJ11gwFR2hIVGchzEV9Pgwcz5AZ96vMZaMYnGKBixWCmMeDdHrc1s2hYbSukIHidtabW1Z1J_B0u_q3MDPNngDZ8IpuOYrmDljggWMZ-b2vbgmLHwAb7IgsdXGtnXmz9FJDqU3F_s-QsvZ9COZh4uXx6fkfhECJaIJqZEgNJaGY8IZZCrDXGIAIk28IlLwlY65FJJIKjCTeazybqtYpHLJwUg2QuM-d-Psd2t8k1aF16YsoTa29SnDURwRRRnt0EmPame9dyZPN66owG1TgtOdxbS3mO4tdgdX--x2VZnsgP9p64CbHugO07VtXd29-l_aLx-3ekA</recordid><startdate>20240724</startdate><enddate>20240724</enddate><creator>Beckmann, Benedikt</creator><creator>Pfeuffer, Lukas</creator><creator>Lill, Johanna</creator><creator>Eggert, Benedikt</creator><creator>Koch, David</creator><creator>Lavina, Barbara</creator><creator>Zhao, Jiyong</creator><creator>Toellner, Thomas</creator><creator>Alp, Esen E.</creator><creator>Ollefs, Katharina</creator><creator>Skokov, Konstantin P.</creator><creator>Wende, Heiko</creator><creator>Gutfleisch, Oliver</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7739-3541</orcidid><orcidid>https://orcid.org/0000-0001-8395-3541</orcidid><orcidid>https://orcid.org/0000-0003-4321-9021</orcidid><orcidid>https://orcid.org/0000-0002-2232-1804</orcidid></search><sort><creationdate>20240724</creationdate><title>Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds</title><author>Beckmann, Benedikt ; Pfeuffer, Lukas ; Lill, Johanna ; Eggert, Benedikt ; Koch, David ; Lavina, Barbara ; Zhao, Jiyong ; Toellner, Thomas ; Alp, Esen E. ; Ollefs, Katharina ; Skokov, Konstantin P. ; Wende, Heiko ; Gutfleisch, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-2e6a5c06e40143ad9d0460aa16e8b1654bc846561625036f89f0aa9379f64ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckmann, Benedikt</creatorcontrib><creatorcontrib>Pfeuffer, Lukas</creatorcontrib><creatorcontrib>Lill, Johanna</creatorcontrib><creatorcontrib>Eggert, Benedikt</creatorcontrib><creatorcontrib>Koch, David</creatorcontrib><creatorcontrib>Lavina, Barbara</creatorcontrib><creatorcontrib>Zhao, Jiyong</creatorcontrib><creatorcontrib>Toellner, Thomas</creatorcontrib><creatorcontrib>Alp, Esen E.</creatorcontrib><creatorcontrib>Ollefs, Katharina</creatorcontrib><creatorcontrib>Skokov, Konstantin P.</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Gutfleisch, Oliver</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckmann, Benedikt</au><au>Pfeuffer, Lukas</au><au>Lill, Johanna</au><au>Eggert, Benedikt</au><au>Koch, David</au><au>Lavina, Barbara</au><au>Zhao, Jiyong</au><au>Toellner, Thomas</au><au>Alp, Esen E.</au><au>Ollefs, Katharina</au><au>Skokov, Konstantin P.</au><au>Wende, Heiko</au><au>Gutfleisch, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-24</date><risdate>2024</risdate><volume>16</volume><issue>29</issue><spage>38208</spage><epage>38220</epage><pages>38208-38220</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to −28 J (kg K)−1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38990047</pmid><doi>10.1021/acsami.4c05397</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7739-3541</orcidid><orcidid>https://orcid.org/0000-0001-8395-3541</orcidid><orcidid>https://orcid.org/0000-0003-4321-9021</orcidid><orcidid>https://orcid.org/0000-0002-2232-1804</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-07, Vol.16 (29), p.38208-38220 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3078719232 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Functional Inorganic Materials and Devices |
title | Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicaloric%20Cryocooling%20Using%20Heavy%20Rare-Earth%20Free%20La(Fe,Si)13-Based%20Compounds&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Beckmann,%20Benedikt&rft.date=2024-07-24&rft.volume=16&rft.issue=29&rft.spage=38208&rft.epage=38220&rft.pages=38208-38220&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c05397&rft_dat=%3Cproquest_cross%3E3078719232%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a215t-2e6a5c06e40143ad9d0460aa16e8b1654bc846561625036f89f0aa9379f64ae63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078719232&rft_id=info:pmid/38990047&rfr_iscdi=true |