Loading…

Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds

The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current rel...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-07, Vol.16 (29), p.38208-38220
Main Authors: Beckmann, Benedikt, Pfeuffer, Lukas, Lill, Johanna, Eggert, Benedikt, Koch, David, Lavina, Barbara, Zhao, Jiyong, Toellner, Thomas, Alp, Esen E., Ollefs, Katharina, Skokov, Konstantin P., Wende, Heiko, Gutfleisch, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a215t-2e6a5c06e40143ad9d0460aa16e8b1654bc846561625036f89f0aa9379f64ae63
container_end_page 38220
container_issue 29
container_start_page 38208
container_title ACS applied materials & interfaces
container_volume 16
creator Beckmann, Benedikt
Pfeuffer, Lukas
Lill, Johanna
Eggert, Benedikt
Koch, David
Lavina, Barbara
Zhao, Jiyong
Toellner, Thomas
Alp, Esen E.
Ollefs, Katharina
Skokov, Konstantin P.
Wende, Heiko
Gutfleisch, Oliver
description The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to −28 J (kg K)−1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.
doi_str_mv 10.1021/acsami.4c05397
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3078719232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078719232</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-2e6a5c06e40143ad9d0460aa16e8b1654bc846561625036f89f0aa9379f64ae63</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK1ePUqOVUzd72SPGlorVBS15zDdbDQlydbdROi_NyW1Ny8zA_PMC_MgdEnwhGBK7kB7qIoJ11gwFR2hIVGchzEV9Pgwcz5AZ96vMZaMYnGKBixWCmMeDdHrc1s2hYbSukIHidtabW1Z1J_B0u_q3MDPNngDZ8IpuOYrmDljggWMZ-b2vbgmLHwAb7IgsdXGtnXmz9FJDqU3F_s-QsvZ9COZh4uXx6fkfhECJaIJqZEgNJaGY8IZZCrDXGIAIk28IlLwlY65FJJIKjCTeazybqtYpHLJwUg2QuM-d-Psd2t8k1aF16YsoTa29SnDURwRRRnt0EmPame9dyZPN66owG1TgtOdxbS3mO4tdgdX--x2VZnsgP9p64CbHugO07VtXd29-l_aLx-3ekA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078719232</pqid></control><display><type>article</type><title>Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Beckmann, Benedikt ; Pfeuffer, Lukas ; Lill, Johanna ; Eggert, Benedikt ; Koch, David ; Lavina, Barbara ; Zhao, Jiyong ; Toellner, Thomas ; Alp, Esen E. ; Ollefs, Katharina ; Skokov, Konstantin P. ; Wende, Heiko ; Gutfleisch, Oliver</creator><creatorcontrib>Beckmann, Benedikt ; Pfeuffer, Lukas ; Lill, Johanna ; Eggert, Benedikt ; Koch, David ; Lavina, Barbara ; Zhao, Jiyong ; Toellner, Thomas ; Alp, Esen E. ; Ollefs, Katharina ; Skokov, Konstantin P. ; Wende, Heiko ; Gutfleisch, Oliver</creatorcontrib><description>The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to −28 J (kg K)−1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c05397</identifier><identifier>PMID: 38990047</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2024-07, Vol.16 (29), p.38208-38220</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-2e6a5c06e40143ad9d0460aa16e8b1654bc846561625036f89f0aa9379f64ae63</cites><orcidid>0000-0001-7739-3541 ; 0000-0001-8395-3541 ; 0000-0003-4321-9021 ; 0000-0002-2232-1804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38990047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckmann, Benedikt</creatorcontrib><creatorcontrib>Pfeuffer, Lukas</creatorcontrib><creatorcontrib>Lill, Johanna</creatorcontrib><creatorcontrib>Eggert, Benedikt</creatorcontrib><creatorcontrib>Koch, David</creatorcontrib><creatorcontrib>Lavina, Barbara</creatorcontrib><creatorcontrib>Zhao, Jiyong</creatorcontrib><creatorcontrib>Toellner, Thomas</creatorcontrib><creatorcontrib>Alp, Esen E.</creatorcontrib><creatorcontrib>Ollefs, Katharina</creatorcontrib><creatorcontrib>Skokov, Konstantin P.</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Gutfleisch, Oliver</creatorcontrib><title>Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to −28 J (kg K)−1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRbK1ePUqOVUzd72SPGlorVBS15zDdbDQlydbdROi_NyW1Ny8zA_PMC_MgdEnwhGBK7kB7qIoJ11gwFR2hIVGchzEV9Pgwcz5AZ96vMZaMYnGKBixWCmMeDdHrc1s2hYbSukIHidtabW1Z1J_B0u_q3MDPNngDZ8IpuOYrmDljggWMZ-b2vbgmLHwAb7IgsdXGtnXmz9FJDqU3F_s-QsvZ9COZh4uXx6fkfhECJaIJqZEgNJaGY8IZZCrDXGIAIk28IlLwlY65FJJIKjCTeazybqtYpHLJwUg2QuM-d-Psd2t8k1aF16YsoTa29SnDURwRRRnt0EmPame9dyZPN66owG1TgtOdxbS3mO4tdgdX--x2VZnsgP9p64CbHugO07VtXd29-l_aLx-3ekA</recordid><startdate>20240724</startdate><enddate>20240724</enddate><creator>Beckmann, Benedikt</creator><creator>Pfeuffer, Lukas</creator><creator>Lill, Johanna</creator><creator>Eggert, Benedikt</creator><creator>Koch, David</creator><creator>Lavina, Barbara</creator><creator>Zhao, Jiyong</creator><creator>Toellner, Thomas</creator><creator>Alp, Esen E.</creator><creator>Ollefs, Katharina</creator><creator>Skokov, Konstantin P.</creator><creator>Wende, Heiko</creator><creator>Gutfleisch, Oliver</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7739-3541</orcidid><orcidid>https://orcid.org/0000-0001-8395-3541</orcidid><orcidid>https://orcid.org/0000-0003-4321-9021</orcidid><orcidid>https://orcid.org/0000-0002-2232-1804</orcidid></search><sort><creationdate>20240724</creationdate><title>Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds</title><author>Beckmann, Benedikt ; Pfeuffer, Lukas ; Lill, Johanna ; Eggert, Benedikt ; Koch, David ; Lavina, Barbara ; Zhao, Jiyong ; Toellner, Thomas ; Alp, Esen E. ; Ollefs, Katharina ; Skokov, Konstantin P. ; Wende, Heiko ; Gutfleisch, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-2e6a5c06e40143ad9d0460aa16e8b1654bc846561625036f89f0aa9379f64ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckmann, Benedikt</creatorcontrib><creatorcontrib>Pfeuffer, Lukas</creatorcontrib><creatorcontrib>Lill, Johanna</creatorcontrib><creatorcontrib>Eggert, Benedikt</creatorcontrib><creatorcontrib>Koch, David</creatorcontrib><creatorcontrib>Lavina, Barbara</creatorcontrib><creatorcontrib>Zhao, Jiyong</creatorcontrib><creatorcontrib>Toellner, Thomas</creatorcontrib><creatorcontrib>Alp, Esen E.</creatorcontrib><creatorcontrib>Ollefs, Katharina</creatorcontrib><creatorcontrib>Skokov, Konstantin P.</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Gutfleisch, Oliver</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckmann, Benedikt</au><au>Pfeuffer, Lukas</au><au>Lill, Johanna</au><au>Eggert, Benedikt</au><au>Koch, David</au><au>Lavina, Barbara</au><au>Zhao, Jiyong</au><au>Toellner, Thomas</au><au>Alp, Esen E.</au><au>Ollefs, Katharina</au><au>Skokov, Konstantin P.</au><au>Wende, Heiko</au><au>Gutfleisch, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-07-24</date><risdate>2024</risdate><volume>16</volume><issue>29</issue><spage>38208</spage><epage>38220</epage><pages>38208-38220</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to −28 J (kg K)−1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38990047</pmid><doi>10.1021/acsami.4c05397</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7739-3541</orcidid><orcidid>https://orcid.org/0000-0001-8395-3541</orcidid><orcidid>https://orcid.org/0000-0003-4321-9021</orcidid><orcidid>https://orcid.org/0000-0002-2232-1804</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-07, Vol.16 (29), p.38208-38220
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3078719232
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Functional Inorganic Materials and Devices
title Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicaloric%20Cryocooling%20Using%20Heavy%20Rare-Earth%20Free%20La(Fe,Si)13-Based%20Compounds&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Beckmann,%20Benedikt&rft.date=2024-07-24&rft.volume=16&rft.issue=29&rft.spage=38208&rft.epage=38220&rft.pages=38208-38220&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c05397&rft_dat=%3Cproquest_cross%3E3078719232%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a215t-2e6a5c06e40143ad9d0460aa16e8b1654bc846561625036f89f0aa9379f64ae63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078719232&rft_id=info:pmid/38990047&rfr_iscdi=true