Loading…
CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging
Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signals, e.g. electroencephalogram (EEG) and electroocul...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2024-07, Vol.28 (12), p.7392-7405 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7405 |
container_issue | 12 |
container_start_page | 7392 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 28 |
creator | Wang, Jiquan Zhao, Sha Jiang, Haiteng Zhou, Yangxuan Yu, Zhenghe Li, Tao Li, Shijian Pan, Gang |
description | Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signals, e.g. electroencephalogram (EEG) and electrooculogram (EOG), is a gold standard for sleep staging. Although existing studies have achieved high performance on automatic sleep staging from PSG, there are still some limitations: 1) they focus on local features but ignore global features within each sleep epoch, and 2) they ignore cross-modality context relationship between EEG and EOG. In this paper, we propose CareSleepNet, a novel hybrid deep learning network for automatic sleep staging from PSG recordings. Specifically, we first design a multi-scale Convolutional-Transformer Epoch Encoder to encode both local salient wave features and global features within each sleep epoch. Then, we devise a Cross-Modality Context Encoder based on co-attention mechanism to model cross-modality context relationship between different modalities. Next, we use a Transformer-based Sequence Encoder to capture the sequential relationship among sleep epochs. Finally, the learned feature representations are fed into an epoch-level classifier to determine the sleep stages. We collected a private sleep dataset, SSND, and use two public datasets, Sleep-EDF-153 and ISRUC to evaluate the performance of CareSleepNet. The experiment results show that our CareSleepNet achieves the state-of-the-art performance on the three datasets. Moreover, we conduct ablation studies and attention visualizations to prove the effectiveness of each module and to analyze the influence of each modality. |
doi_str_mv | 10.1109/JBHI.2024.3426939 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079170428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10595067</ieee_id><sourcerecordid>3079170428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1199-d06722db09274c18825f9848b0b8526911726058bab5e393c48bc0363149fec73</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EolXpByAh5CWbFL-S2OxKeQRUwaKwthxnUgWSptiJUP8el7aI2cxo5twrzUXonJIJpURdP99mTxNGmJhwwRLF1REaMprIiDEijw8zVWKAxt5_kFAyrFRyigZcKkVSoYYomxkHixpg_QLdDZ7ibJO7qsB3YYPnYNyqWi1xuH237hOXrcPTvmsb01UW_8rwojPLwJyhk9LUHsb7PkLvD_dvsyyavz4-zabzyFKqVFSQJGWsyIliqbBUShaXSgqZk1zG4Q1KU5aQWOYmj4ErbsPJEp5wKlQJNuUjdLXzXbv2qwff6abyFurarKDtveYkVTQlgsmA0h1qXeu9g1KvXdUYt9GU6G2Gepuh3mao9xkGzeXevs8bKP4Uh8QCcLEDKgD4ZxirOLzGfwBl1nJR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079170428</pqid></control><display><type>article</type><title>CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging</title><source>IEEE Xplore (Online service)</source><creator>Wang, Jiquan ; Zhao, Sha ; Jiang, Haiteng ; Zhou, Yangxuan ; Yu, Zhenghe ; Li, Tao ; Li, Shijian ; Pan, Gang</creator><creatorcontrib>Wang, Jiquan ; Zhao, Sha ; Jiang, Haiteng ; Zhou, Yangxuan ; Yu, Zhenghe ; Li, Tao ; Li, Shijian ; Pan, Gang</creatorcontrib><description>Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signals, e.g. electroencephalogram (EEG) and electrooculogram (EOG), is a gold standard for sleep staging. Although existing studies have achieved high performance on automatic sleep staging from PSG, there are still some limitations: 1) they focus on local features but ignore global features within each sleep epoch, and 2) they ignore cross-modality context relationship between EEG and EOG. In this paper, we propose CareSleepNet, a novel hybrid deep learning network for automatic sleep staging from PSG recordings. Specifically, we first design a multi-scale Convolutional-Transformer Epoch Encoder to encode both local salient wave features and global features within each sleep epoch. Then, we devise a Cross-Modality Context Encoder based on co-attention mechanism to model cross-modality context relationship between different modalities. Next, we use a Transformer-based Sequence Encoder to capture the sequential relationship among sleep epochs. Finally, the learned feature representations are fed into an epoch-level classifier to determine the sleep stages. We collected a private sleep dataset, SSND, and use two public datasets, Sleep-EDF-153 and ISRUC to evaluate the performance of CareSleepNet. The experiment results show that our CareSleepNet achieves the state-of-the-art performance on the three datasets. Moreover, we conduct ablation studies and attention visualizations to prove the effectiveness of each module and to analyze the influence of each modality.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3426939</identifier><identifier>PMID: 38990749</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Brain modeling ; Context modeling ; cross-modality ; Deep learning ; Electroencephalography ; Electrooculography ; PSG recordings ; Sleep ; Sleep staging ; Transformers</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (12), p.7392-7405</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4049-6181 ; 0000-0003-4628-5198 ; 0000-0002-1621-1836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10595067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38990749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jiquan</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Jiang, Haiteng</creatorcontrib><creatorcontrib>Zhou, Yangxuan</creatorcontrib><creatorcontrib>Yu, Zhenghe</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><title>CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signals, e.g. electroencephalogram (EEG) and electrooculogram (EOG), is a gold standard for sleep staging. Although existing studies have achieved high performance on automatic sleep staging from PSG, there are still some limitations: 1) they focus on local features but ignore global features within each sleep epoch, and 2) they ignore cross-modality context relationship between EEG and EOG. In this paper, we propose CareSleepNet, a novel hybrid deep learning network for automatic sleep staging from PSG recordings. Specifically, we first design a multi-scale Convolutional-Transformer Epoch Encoder to encode both local salient wave features and global features within each sleep epoch. Then, we devise a Cross-Modality Context Encoder based on co-attention mechanism to model cross-modality context relationship between different modalities. Next, we use a Transformer-based Sequence Encoder to capture the sequential relationship among sleep epochs. Finally, the learned feature representations are fed into an epoch-level classifier to determine the sleep stages. We collected a private sleep dataset, SSND, and use two public datasets, Sleep-EDF-153 and ISRUC to evaluate the performance of CareSleepNet. The experiment results show that our CareSleepNet achieves the state-of-the-art performance on the three datasets. Moreover, we conduct ablation studies and attention visualizations to prove the effectiveness of each module and to analyze the influence of each modality.</description><subject>Brain modeling</subject><subject>Context modeling</subject><subject>cross-modality</subject><subject>Deep learning</subject><subject>Electroencephalography</subject><subject>Electrooculography</subject><subject>PSG recordings</subject><subject>Sleep</subject><subject>Sleep staging</subject><subject>Transformers</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EolXpByAh5CWbFL-S2OxKeQRUwaKwthxnUgWSptiJUP8el7aI2cxo5twrzUXonJIJpURdP99mTxNGmJhwwRLF1REaMprIiDEijw8zVWKAxt5_kFAyrFRyigZcKkVSoYYomxkHixpg_QLdDZ7ibJO7qsB3YYPnYNyqWi1xuH237hOXrcPTvmsb01UW_8rwojPLwJyhk9LUHsb7PkLvD_dvsyyavz4-zabzyFKqVFSQJGWsyIliqbBUShaXSgqZk1zG4Q1KU5aQWOYmj4ErbsPJEp5wKlQJNuUjdLXzXbv2qwff6abyFurarKDtveYkVTQlgsmA0h1qXeu9g1KvXdUYt9GU6G2Gepuh3mao9xkGzeXevs8bKP4Uh8QCcLEDKgD4ZxirOLzGfwBl1nJR</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Wang, Jiquan</creator><creator>Zhao, Sha</creator><creator>Jiang, Haiteng</creator><creator>Zhou, Yangxuan</creator><creator>Yu, Zhenghe</creator><creator>Li, Tao</creator><creator>Li, Shijian</creator><creator>Pan, Gang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-1621-1836</orcidid></search><sort><creationdate>20240711</creationdate><title>CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging</title><author>Wang, Jiquan ; Zhao, Sha ; Jiang, Haiteng ; Zhou, Yangxuan ; Yu, Zhenghe ; Li, Tao ; Li, Shijian ; Pan, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1199-d06722db09274c18825f9848b0b8526911726058bab5e393c48bc0363149fec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain modeling</topic><topic>Context modeling</topic><topic>cross-modality</topic><topic>Deep learning</topic><topic>Electroencephalography</topic><topic>Electrooculography</topic><topic>PSG recordings</topic><topic>Sleep</topic><topic>Sleep staging</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiquan</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Jiang, Haiteng</creatorcontrib><creatorcontrib>Zhou, Yangxuan</creatorcontrib><creatorcontrib>Yu, Zhenghe</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiquan</au><au>Zhao, Sha</au><au>Jiang, Haiteng</au><au>Zhou, Yangxuan</au><au>Yu, Zhenghe</au><au>Li, Tao</au><au>Li, Shijian</au><au>Pan, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-07-11</date><risdate>2024</risdate><volume>28</volume><issue>12</issue><spage>7392</spage><epage>7405</epage><pages>7392-7405</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signals, e.g. electroencephalogram (EEG) and electrooculogram (EOG), is a gold standard for sleep staging. Although existing studies have achieved high performance on automatic sleep staging from PSG, there are still some limitations: 1) they focus on local features but ignore global features within each sleep epoch, and 2) they ignore cross-modality context relationship between EEG and EOG. In this paper, we propose CareSleepNet, a novel hybrid deep learning network for automatic sleep staging from PSG recordings. Specifically, we first design a multi-scale Convolutional-Transformer Epoch Encoder to encode both local salient wave features and global features within each sleep epoch. Then, we devise a Cross-Modality Context Encoder based on co-attention mechanism to model cross-modality context relationship between different modalities. Next, we use a Transformer-based Sequence Encoder to capture the sequential relationship among sleep epochs. Finally, the learned feature representations are fed into an epoch-level classifier to determine the sleep stages. We collected a private sleep dataset, SSND, and use two public datasets, Sleep-EDF-153 and ISRUC to evaluate the performance of CareSleepNet. The experiment results show that our CareSleepNet achieves the state-of-the-art performance on the three datasets. Moreover, we conduct ablation studies and attention visualizations to prove the effectiveness of each module and to analyze the influence of each modality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38990749</pmid><doi>10.1109/JBHI.2024.3426939</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-1621-1836</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (12), p.7392-7405 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_proquest_miscellaneous_3079170428 |
source | IEEE Xplore (Online service) |
subjects | Brain modeling Context modeling cross-modality Deep learning Electroencephalography Electrooculography PSG recordings Sleep Sleep staging Transformers |
title | CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CareSleepNet:%20A%20Hybrid%20Deep%20Learning%20Network%20for%20Automatic%20Sleep%20Staging&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Wang,%20Jiquan&rft.date=2024-07-11&rft.volume=28&rft.issue=12&rft.spage=7392&rft.epage=7405&rft.pages=7392-7405&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3426939&rft_dat=%3Cproquest_cross%3E3079170428%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1199-d06722db09274c18825f9848b0b8526911726058bab5e393c48bc0363149fec73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3079170428&rft_id=info:pmid/38990749&rft_ieee_id=10595067&rfr_iscdi=true |