Loading…

CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging

Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signals, e.g. electroencephalogram (EEG) and electroocul...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2024-07, Vol.28 (12), p.7392-7405
Main Authors: Wang, Jiquan, Zhao, Sha, Jiang, Haiteng, Zhou, Yangxuan, Yu, Zhenghe, Li, Tao, Li, Shijian, Pan, Gang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7405
container_issue 12
container_start_page 7392
container_title IEEE journal of biomedical and health informatics
container_volume 28
creator Wang, Jiquan
Zhao, Sha
Jiang, Haiteng
Zhou, Yangxuan
Yu, Zhenghe
Li, Tao
Li, Shijian
Pan, Gang
description Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signals, e.g. electroencephalogram (EEG) and electrooculogram (EOG), is a gold standard for sleep staging. Although existing studies have achieved high performance on automatic sleep staging from PSG, there are still some limitations: 1) they focus on local features but ignore global features within each sleep epoch, and 2) they ignore cross-modality context relationship between EEG and EOG. In this paper, we propose CareSleepNet, a novel hybrid deep learning network for automatic sleep staging from PSG recordings. Specifically, we first design a multi-scale Convolutional-Transformer Epoch Encoder to encode both local salient wave features and global features within each sleep epoch. Then, we devise a Cross-Modality Context Encoder based on co-attention mechanism to model cross-modality context relationship between different modalities. Next, we use a Transformer-based Sequence Encoder to capture the sequential relationship among sleep epochs. Finally, the learned feature representations are fed into an epoch-level classifier to determine the sleep stages. We collected a private sleep dataset, SSND, and use two public datasets, Sleep-EDF-153 and ISRUC to evaluate the performance of CareSleepNet. The experiment results show that our CareSleepNet achieves the state-of-the-art performance on the three datasets. Moreover, we conduct ablation studies and attention visualizations to prove the effectiveness of each module and to analyze the influence of each modality.
doi_str_mv 10.1109/JBHI.2024.3426939
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079170428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10595067</ieee_id><sourcerecordid>3079170428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1199-d06722db09274c18825f9848b0b8526911726058bab5e393c48bc0363149fec73</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EolXpByAh5CWbFL-S2OxKeQRUwaKwthxnUgWSptiJUP8el7aI2cxo5twrzUXonJIJpURdP99mTxNGmJhwwRLF1REaMprIiDEijw8zVWKAxt5_kFAyrFRyigZcKkVSoYYomxkHixpg_QLdDZ7ibJO7qsB3YYPnYNyqWi1xuH237hOXrcPTvmsb01UW_8rwojPLwJyhk9LUHsb7PkLvD_dvsyyavz4-zabzyFKqVFSQJGWsyIliqbBUShaXSgqZk1zG4Q1KU5aQWOYmj4ErbsPJEp5wKlQJNuUjdLXzXbv2qwff6abyFurarKDtveYkVTQlgsmA0h1qXeu9g1KvXdUYt9GU6G2Gepuh3mao9xkGzeXevs8bKP4Uh8QCcLEDKgD4ZxirOLzGfwBl1nJR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079170428</pqid></control><display><type>article</type><title>CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging</title><source>IEEE Xplore (Online service)</source><creator>Wang, Jiquan ; Zhao, Sha ; Jiang, Haiteng ; Zhou, Yangxuan ; Yu, Zhenghe ; Li, Tao ; Li, Shijian ; Pan, Gang</creator><creatorcontrib>Wang, Jiquan ; Zhao, Sha ; Jiang, Haiteng ; Zhou, Yangxuan ; Yu, Zhenghe ; Li, Tao ; Li, Shijian ; Pan, Gang</creatorcontrib><description>Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signals, e.g. electroencephalogram (EEG) and electrooculogram (EOG), is a gold standard for sleep staging. Although existing studies have achieved high performance on automatic sleep staging from PSG, there are still some limitations: 1) they focus on local features but ignore global features within each sleep epoch, and 2) they ignore cross-modality context relationship between EEG and EOG. In this paper, we propose CareSleepNet, a novel hybrid deep learning network for automatic sleep staging from PSG recordings. Specifically, we first design a multi-scale Convolutional-Transformer Epoch Encoder to encode both local salient wave features and global features within each sleep epoch. Then, we devise a Cross-Modality Context Encoder based on co-attention mechanism to model cross-modality context relationship between different modalities. Next, we use a Transformer-based Sequence Encoder to capture the sequential relationship among sleep epochs. Finally, the learned feature representations are fed into an epoch-level classifier to determine the sleep stages. We collected a private sleep dataset, SSND, and use two public datasets, Sleep-EDF-153 and ISRUC to evaluate the performance of CareSleepNet. The experiment results show that our CareSleepNet achieves the state-of-the-art performance on the three datasets. Moreover, we conduct ablation studies and attention visualizations to prove the effectiveness of each module and to analyze the influence of each modality.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3426939</identifier><identifier>PMID: 38990749</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Brain modeling ; Context modeling ; cross-modality ; Deep learning ; Electroencephalography ; Electrooculography ; PSG recordings ; Sleep ; Sleep staging ; Transformers</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (12), p.7392-7405</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4049-6181 ; 0000-0003-4628-5198 ; 0000-0002-1621-1836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10595067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38990749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jiquan</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Jiang, Haiteng</creatorcontrib><creatorcontrib>Zhou, Yangxuan</creatorcontrib><creatorcontrib>Yu, Zhenghe</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><title>CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signals, e.g. electroencephalogram (EEG) and electrooculogram (EOG), is a gold standard for sleep staging. Although existing studies have achieved high performance on automatic sleep staging from PSG, there are still some limitations: 1) they focus on local features but ignore global features within each sleep epoch, and 2) they ignore cross-modality context relationship between EEG and EOG. In this paper, we propose CareSleepNet, a novel hybrid deep learning network for automatic sleep staging from PSG recordings. Specifically, we first design a multi-scale Convolutional-Transformer Epoch Encoder to encode both local salient wave features and global features within each sleep epoch. Then, we devise a Cross-Modality Context Encoder based on co-attention mechanism to model cross-modality context relationship between different modalities. Next, we use a Transformer-based Sequence Encoder to capture the sequential relationship among sleep epochs. Finally, the learned feature representations are fed into an epoch-level classifier to determine the sleep stages. We collected a private sleep dataset, SSND, and use two public datasets, Sleep-EDF-153 and ISRUC to evaluate the performance of CareSleepNet. The experiment results show that our CareSleepNet achieves the state-of-the-art performance on the three datasets. Moreover, we conduct ablation studies and attention visualizations to prove the effectiveness of each module and to analyze the influence of each modality.</description><subject>Brain modeling</subject><subject>Context modeling</subject><subject>cross-modality</subject><subject>Deep learning</subject><subject>Electroencephalography</subject><subject>Electrooculography</subject><subject>PSG recordings</subject><subject>Sleep</subject><subject>Sleep staging</subject><subject>Transformers</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EolXpByAh5CWbFL-S2OxKeQRUwaKwthxnUgWSptiJUP8el7aI2cxo5twrzUXonJIJpURdP99mTxNGmJhwwRLF1REaMprIiDEijw8zVWKAxt5_kFAyrFRyigZcKkVSoYYomxkHixpg_QLdDZ7ibJO7qsB3YYPnYNyqWi1xuH237hOXrcPTvmsb01UW_8rwojPLwJyhk9LUHsb7PkLvD_dvsyyavz4-zabzyFKqVFSQJGWsyIliqbBUShaXSgqZk1zG4Q1KU5aQWOYmj4ErbsPJEp5wKlQJNuUjdLXzXbv2qwff6abyFurarKDtveYkVTQlgsmA0h1qXeu9g1KvXdUYt9GU6G2Gepuh3mao9xkGzeXevs8bKP4Uh8QCcLEDKgD4ZxirOLzGfwBl1nJR</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Wang, Jiquan</creator><creator>Zhao, Sha</creator><creator>Jiang, Haiteng</creator><creator>Zhou, Yangxuan</creator><creator>Yu, Zhenghe</creator><creator>Li, Tao</creator><creator>Li, Shijian</creator><creator>Pan, Gang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-1621-1836</orcidid></search><sort><creationdate>20240711</creationdate><title>CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging</title><author>Wang, Jiquan ; Zhao, Sha ; Jiang, Haiteng ; Zhou, Yangxuan ; Yu, Zhenghe ; Li, Tao ; Li, Shijian ; Pan, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1199-d06722db09274c18825f9848b0b8526911726058bab5e393c48bc0363149fec73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain modeling</topic><topic>Context modeling</topic><topic>cross-modality</topic><topic>Deep learning</topic><topic>Electroencephalography</topic><topic>Electrooculography</topic><topic>PSG recordings</topic><topic>Sleep</topic><topic>Sleep staging</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiquan</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Jiang, Haiteng</creatorcontrib><creatorcontrib>Zhou, Yangxuan</creatorcontrib><creatorcontrib>Yu, Zhenghe</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiquan</au><au>Zhao, Sha</au><au>Jiang, Haiteng</au><au>Zhou, Yangxuan</au><au>Yu, Zhenghe</au><au>Li, Tao</au><au>Li, Shijian</au><au>Pan, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-07-11</date><risdate>2024</risdate><volume>28</volume><issue>12</issue><spage>7392</spage><epage>7405</epage><pages>7392-7405</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Sleep staging is essential for sleep assessment and plays an important role in disease diagnosis, which refers to the classification of sleep epochs into different sleep stages. Polysomnography (PSG), consisting of many different physiological signals, e.g. electroencephalogram (EEG) and electrooculogram (EOG), is a gold standard for sleep staging. Although existing studies have achieved high performance on automatic sleep staging from PSG, there are still some limitations: 1) they focus on local features but ignore global features within each sleep epoch, and 2) they ignore cross-modality context relationship between EEG and EOG. In this paper, we propose CareSleepNet, a novel hybrid deep learning network for automatic sleep staging from PSG recordings. Specifically, we first design a multi-scale Convolutional-Transformer Epoch Encoder to encode both local salient wave features and global features within each sleep epoch. Then, we devise a Cross-Modality Context Encoder based on co-attention mechanism to model cross-modality context relationship between different modalities. Next, we use a Transformer-based Sequence Encoder to capture the sequential relationship among sleep epochs. Finally, the learned feature representations are fed into an epoch-level classifier to determine the sleep stages. We collected a private sleep dataset, SSND, and use two public datasets, Sleep-EDF-153 and ISRUC to evaluate the performance of CareSleepNet. The experiment results show that our CareSleepNet achieves the state-of-the-art performance on the three datasets. Moreover, we conduct ablation studies and attention visualizations to prove the effectiveness of each module and to analyze the influence of each modality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38990749</pmid><doi>10.1109/JBHI.2024.3426939</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-1621-1836</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-07, Vol.28 (12), p.7392-7405
issn 2168-2194
2168-2208
2168-2208
language eng
recordid cdi_proquest_miscellaneous_3079170428
source IEEE Xplore (Online service)
subjects Brain modeling
Context modeling
cross-modality
Deep learning
Electroencephalography
Electrooculography
PSG recordings
Sleep
Sleep staging
Transformers
title CareSleepNet: A Hybrid Deep Learning Network for Automatic Sleep Staging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CareSleepNet:%20A%20Hybrid%20Deep%20Learning%20Network%20for%20Automatic%20Sleep%20Staging&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Wang,%20Jiquan&rft.date=2024-07-11&rft.volume=28&rft.issue=12&rft.spage=7392&rft.epage=7405&rft.pages=7392-7405&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3426939&rft_dat=%3Cproquest_cross%3E3079170428%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1199-d06722db09274c18825f9848b0b8526911726058bab5e393c48bc0363149fec73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3079170428&rft_id=info:pmid/38990749&rft_ieee_id=10595067&rfr_iscdi=true