Loading…
Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries
Porous silicon dioxide (SiO )/poly(vinylidene fluoride) (PVdF), SiO /PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO sol-gel/PVdF. The nanofibers of the SiO /PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained fr...
Saved in:
Published in: | Polymers 2024-06, Vol.16 (13), p.1810 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-e528277cb2104df0bf54aa2981b918f41b71a591923e0ed133db3508258d68023 |
container_end_page | |
container_issue | 13 |
container_start_page | 1810 |
container_title | Polymers |
container_volume | 16 |
creator | Kim, Young-Gon Jeong, Bo Gyeong Park, Bum Jin Kim, Heejin Lee, Min Wook Jo, Seong Mu |
description | Porous silicon dioxide (SiO
)/poly(vinylidene fluoride) (PVdF), SiO
/PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO
sol-gel/PVdF. The nanofibers of the SiO
/PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO
component. The thickness of the SiO
skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO
and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of >270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane. |
doi_str_mv | 10.3390/polym16131810 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079859823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079859823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e528277cb2104df0bf54aa2981b918f41b71a591923e0ed133db3508258d68023</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi1ERavSI1dkiUs5uPgjH84RlsJW2hbEwjlykknXxbFTfwD7-_hj9W5bBFiyPCM_82pmXoReMHomREPfzM5sJ1YxwSSjT9ARp7Ughajo07_iQ3QSwg3NpyiritXP0GGupbSqyiP0-9xAH70Lc7J4rY3uncXvtfulB9jLn_7QdmtyZgGPJjmfw9f4Slk36s67FPAlTJ1X-XvhptnroO01Vnj9XVt8mUzMih7IegPG7MtC9KmPyQNWIXNX8BMv9fWGLEFF8gWCDlHZiNcwK6-i83jMd6XjRqeJXOTuPu-GBo_fqRjBawjP0cGoTICTh_cYfftw_nWxJKtPHy8Wb1ekF6yKBEoueV33HWe0GEbajWWhFG8k6xomx4J1NVNlwxougMLAhBg6UVLJSzlUknJxjE7vdWfvbhOE2E469HmuPHxeRCto3ciykVxk9NV_6I1L3ubu9hRtail2guSe6rMBwcPY5v1Nym9bRtudwe0_Bmf-5YNq6iYY_tCPdoo7OSOkYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079097832</pqid></control><display><type>article</type><title>Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kim, Young-Gon ; Jeong, Bo Gyeong ; Park, Bum Jin ; Kim, Heejin ; Lee, Min Wook ; Jo, Seong Mu</creator><creatorcontrib>Kim, Young-Gon ; Jeong, Bo Gyeong ; Park, Bum Jin ; Kim, Heejin ; Lee, Min Wook ; Jo, Seong Mu</creatorcontrib><description>Porous silicon dioxide (SiO
)/poly(vinylidene fluoride) (PVdF), SiO
/PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO
sol-gel/PVdF. The nanofibers of the SiO
/PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO
component. The thickness of the SiO
skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO
and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of >270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16131810</identifier><identifier>PMID: 39000665</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Ceramic glazes ; Electric vehicles ; Electrolytes ; Electrospinning ; Fluorides ; Lithium ; Lithium ions ; Mechanical properties ; Membranes ; Morphology ; Open circuit voltage ; Polymers ; Polyolefins ; Polyvinylidene fluorides ; Porous silicon ; Protective coatings ; Rechargeable batteries ; Scanning electron microscopy ; Silica ; Silicon dioxide ; Skin ; Skin resistance ; Sol-gel processes ; Spectrum analysis ; Temperature ; Thickness ; Vinylidene fluoride</subject><ispartof>Polymers, 2024-06, Vol.16 (13), p.1810</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c316t-e528277cb2104df0bf54aa2981b918f41b71a591923e0ed133db3508258d68023</cites><orcidid>0000-0003-3256-1067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3079097832/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3079097832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39000665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Young-Gon</creatorcontrib><creatorcontrib>Jeong, Bo Gyeong</creatorcontrib><creatorcontrib>Park, Bum Jin</creatorcontrib><creatorcontrib>Kim, Heejin</creatorcontrib><creatorcontrib>Lee, Min Wook</creatorcontrib><creatorcontrib>Jo, Seong Mu</creatorcontrib><title>Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Porous silicon dioxide (SiO
)/poly(vinylidene fluoride) (PVdF), SiO
/PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO
sol-gel/PVdF. The nanofibers of the SiO
/PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO
component. The thickness of the SiO
skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO
and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of >270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane.</description><subject>Ceramic glazes</subject><subject>Electric vehicles</subject><subject>Electrolytes</subject><subject>Electrospinning</subject><subject>Fluorides</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Morphology</subject><subject>Open circuit voltage</subject><subject>Polymers</subject><subject>Polyolefins</subject><subject>Polyvinylidene fluorides</subject><subject>Porous silicon</subject><subject>Protective coatings</subject><subject>Rechargeable batteries</subject><subject>Scanning electron microscopy</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Skin</subject><subject>Skin resistance</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>Thickness</subject><subject>Vinylidene fluoride</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1v1DAQhi1ERavSI1dkiUs5uPgjH84RlsJW2hbEwjlykknXxbFTfwD7-_hj9W5bBFiyPCM_82pmXoReMHomREPfzM5sJ1YxwSSjT9ARp7Ughajo07_iQ3QSwg3NpyiritXP0GGupbSqyiP0-9xAH70Lc7J4rY3uncXvtfulB9jLn_7QdmtyZgGPJjmfw9f4Slk36s67FPAlTJ1X-XvhptnroO01Vnj9XVt8mUzMih7IegPG7MtC9KmPyQNWIXNX8BMv9fWGLEFF8gWCDlHZiNcwK6-i83jMd6XjRqeJXOTuPu-GBo_fqRjBawjP0cGoTICTh_cYfftw_nWxJKtPHy8Wb1ekF6yKBEoueV33HWe0GEbajWWhFG8k6xomx4J1NVNlwxougMLAhBg6UVLJSzlUknJxjE7vdWfvbhOE2E469HmuPHxeRCto3ciykVxk9NV_6I1L3ubu9hRtail2guSe6rMBwcPY5v1Nym9bRtudwe0_Bmf-5YNq6iYY_tCPdoo7OSOkYQ</recordid><startdate>20240626</startdate><enddate>20240626</enddate><creator>Kim, Young-Gon</creator><creator>Jeong, Bo Gyeong</creator><creator>Park, Bum Jin</creator><creator>Kim, Heejin</creator><creator>Lee, Min Wook</creator><creator>Jo, Seong Mu</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3256-1067</orcidid></search><sort><creationdate>20240626</creationdate><title>Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries</title><author>Kim, Young-Gon ; Jeong, Bo Gyeong ; Park, Bum Jin ; Kim, Heejin ; Lee, Min Wook ; Jo, Seong Mu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e528277cb2104df0bf54aa2981b918f41b71a591923e0ed133db3508258d68023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ceramic glazes</topic><topic>Electric vehicles</topic><topic>Electrolytes</topic><topic>Electrospinning</topic><topic>Fluorides</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Morphology</topic><topic>Open circuit voltage</topic><topic>Polymers</topic><topic>Polyolefins</topic><topic>Polyvinylidene fluorides</topic><topic>Porous silicon</topic><topic>Protective coatings</topic><topic>Rechargeable batteries</topic><topic>Scanning electron microscopy</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Skin</topic><topic>Skin resistance</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>Thickness</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Young-Gon</creatorcontrib><creatorcontrib>Jeong, Bo Gyeong</creatorcontrib><creatorcontrib>Park, Bum Jin</creatorcontrib><creatorcontrib>Kim, Heejin</creatorcontrib><creatorcontrib>Lee, Min Wook</creatorcontrib><creatorcontrib>Jo, Seong Mu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Young-Gon</au><au>Jeong, Bo Gyeong</au><au>Park, Bum Jin</au><au>Kim, Heejin</au><au>Lee, Min Wook</au><au>Jo, Seong Mu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-06-26</date><risdate>2024</risdate><volume>16</volume><issue>13</issue><spage>1810</spage><pages>1810-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Porous silicon dioxide (SiO
)/poly(vinylidene fluoride) (PVdF), SiO
/PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO
sol-gel/PVdF. The nanofibers of the SiO
/PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO
component. The thickness of the SiO
skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO
and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of >270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39000665</pmid><doi>10.3390/polym16131810</doi><orcidid>https://orcid.org/0000-0003-3256-1067</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2024-06, Vol.16 (13), p.1810 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_proquest_miscellaneous_3079859823 |
source | Publicly Available Content Database; PubMed Central |
subjects | Ceramic glazes Electric vehicles Electrolytes Electrospinning Fluorides Lithium Lithium ions Mechanical properties Membranes Morphology Open circuit voltage Polymers Polyolefins Polyvinylidene fluorides Porous silicon Protective coatings Rechargeable batteries Scanning electron microscopy Silica Silicon dioxide Skin Skin resistance Sol-gel processes Spectrum analysis Temperature Thickness Vinylidene fluoride |
title | Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20Silicon%20Dioxide/poly(vinylidene%20fluoride)%20Nanofibrous%20Membrane%20Comprising%20a%20Skin%20Multicore-Shell%20Nanostructure%20as%20a%20New%20High-Heat-Resistant%20Separator%20for%20Lithium-Ion%20Polymer%20Batteries&rft.jtitle=Polymers&rft.au=Kim,%20Young-Gon&rft.date=2024-06-26&rft.volume=16&rft.issue=13&rft.spage=1810&rft.pages=1810-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16131810&rft_dat=%3Cproquest_cross%3E3079859823%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e528277cb2104df0bf54aa2981b918f41b71a591923e0ed133db3508258d68023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3079097832&rft_id=info:pmid/39000665&rfr_iscdi=true |