Loading…

Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries

Porous silicon dioxide (SiO )/poly(vinylidene fluoride) (PVdF), SiO /PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO sol-gel/PVdF. The nanofibers of the SiO /PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained fr...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-06, Vol.16 (13), p.1810
Main Authors: Kim, Young-Gon, Jeong, Bo Gyeong, Park, Bum Jin, Kim, Heejin, Lee, Min Wook, Jo, Seong Mu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c316t-e528277cb2104df0bf54aa2981b918f41b71a591923e0ed133db3508258d68023
container_end_page
container_issue 13
container_start_page 1810
container_title Polymers
container_volume 16
creator Kim, Young-Gon
Jeong, Bo Gyeong
Park, Bum Jin
Kim, Heejin
Lee, Min Wook
Jo, Seong Mu
description Porous silicon dioxide (SiO )/poly(vinylidene fluoride) (PVdF), SiO /PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO sol-gel/PVdF. The nanofibers of the SiO /PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO component. The thickness of the SiO skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of >270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane.
doi_str_mv 10.3390/polym16131810
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3079859823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079859823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e528277cb2104df0bf54aa2981b918f41b71a591923e0ed133db3508258d68023</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi1ERavSI1dkiUs5uPgjH84RlsJW2hbEwjlykknXxbFTfwD7-_hj9W5bBFiyPCM_82pmXoReMHomREPfzM5sJ1YxwSSjT9ARp7Ughajo07_iQ3QSwg3NpyiritXP0GGupbSqyiP0-9xAH70Lc7J4rY3uncXvtfulB9jLn_7QdmtyZgGPJjmfw9f4Slk36s67FPAlTJ1X-XvhptnroO01Vnj9XVt8mUzMih7IegPG7MtC9KmPyQNWIXNX8BMv9fWGLEFF8gWCDlHZiNcwK6-i83jMd6XjRqeJXOTuPu-GBo_fqRjBawjP0cGoTICTh_cYfftw_nWxJKtPHy8Wb1ekF6yKBEoueV33HWe0GEbajWWhFG8k6xomx4J1NVNlwxougMLAhBg6UVLJSzlUknJxjE7vdWfvbhOE2E469HmuPHxeRCto3ciykVxk9NV_6I1L3ubu9hRtail2guSe6rMBwcPY5v1Nym9bRtudwe0_Bmf-5YNq6iYY_tCPdoo7OSOkYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079097832</pqid></control><display><type>article</type><title>Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kim, Young-Gon ; Jeong, Bo Gyeong ; Park, Bum Jin ; Kim, Heejin ; Lee, Min Wook ; Jo, Seong Mu</creator><creatorcontrib>Kim, Young-Gon ; Jeong, Bo Gyeong ; Park, Bum Jin ; Kim, Heejin ; Lee, Min Wook ; Jo, Seong Mu</creatorcontrib><description>Porous silicon dioxide (SiO )/poly(vinylidene fluoride) (PVdF), SiO /PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO sol-gel/PVdF. The nanofibers of the SiO /PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO component. The thickness of the SiO skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of &gt;270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16131810</identifier><identifier>PMID: 39000665</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Ceramic glazes ; Electric vehicles ; Electrolytes ; Electrospinning ; Fluorides ; Lithium ; Lithium ions ; Mechanical properties ; Membranes ; Morphology ; Open circuit voltage ; Polymers ; Polyolefins ; Polyvinylidene fluorides ; Porous silicon ; Protective coatings ; Rechargeable batteries ; Scanning electron microscopy ; Silica ; Silicon dioxide ; Skin ; Skin resistance ; Sol-gel processes ; Spectrum analysis ; Temperature ; Thickness ; Vinylidene fluoride</subject><ispartof>Polymers, 2024-06, Vol.16 (13), p.1810</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c316t-e528277cb2104df0bf54aa2981b918f41b71a591923e0ed133db3508258d68023</cites><orcidid>0000-0003-3256-1067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3079097832/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3079097832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39000665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Young-Gon</creatorcontrib><creatorcontrib>Jeong, Bo Gyeong</creatorcontrib><creatorcontrib>Park, Bum Jin</creatorcontrib><creatorcontrib>Kim, Heejin</creatorcontrib><creatorcontrib>Lee, Min Wook</creatorcontrib><creatorcontrib>Jo, Seong Mu</creatorcontrib><title>Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Porous silicon dioxide (SiO )/poly(vinylidene fluoride) (PVdF), SiO /PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO sol-gel/PVdF. The nanofibers of the SiO /PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO component. The thickness of the SiO skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of &gt;270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane.</description><subject>Ceramic glazes</subject><subject>Electric vehicles</subject><subject>Electrolytes</subject><subject>Electrospinning</subject><subject>Fluorides</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Morphology</subject><subject>Open circuit voltage</subject><subject>Polymers</subject><subject>Polyolefins</subject><subject>Polyvinylidene fluorides</subject><subject>Porous silicon</subject><subject>Protective coatings</subject><subject>Rechargeable batteries</subject><subject>Scanning electron microscopy</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Skin</subject><subject>Skin resistance</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>Thickness</subject><subject>Vinylidene fluoride</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1v1DAQhi1ERavSI1dkiUs5uPgjH84RlsJW2hbEwjlykknXxbFTfwD7-_hj9W5bBFiyPCM_82pmXoReMHomREPfzM5sJ1YxwSSjT9ARp7Ughajo07_iQ3QSwg3NpyiritXP0GGupbSqyiP0-9xAH70Lc7J4rY3uncXvtfulB9jLn_7QdmtyZgGPJjmfw9f4Slk36s67FPAlTJ1X-XvhptnroO01Vnj9XVt8mUzMih7IegPG7MtC9KmPyQNWIXNX8BMv9fWGLEFF8gWCDlHZiNcwK6-i83jMd6XjRqeJXOTuPu-GBo_fqRjBawjP0cGoTICTh_cYfftw_nWxJKtPHy8Wb1ekF6yKBEoueV33HWe0GEbajWWhFG8k6xomx4J1NVNlwxougMLAhBg6UVLJSzlUknJxjE7vdWfvbhOE2E469HmuPHxeRCto3ciykVxk9NV_6I1L3ubu9hRtail2guSe6rMBwcPY5v1Nym9bRtudwe0_Bmf-5YNq6iYY_tCPdoo7OSOkYQ</recordid><startdate>20240626</startdate><enddate>20240626</enddate><creator>Kim, Young-Gon</creator><creator>Jeong, Bo Gyeong</creator><creator>Park, Bum Jin</creator><creator>Kim, Heejin</creator><creator>Lee, Min Wook</creator><creator>Jo, Seong Mu</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3256-1067</orcidid></search><sort><creationdate>20240626</creationdate><title>Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries</title><author>Kim, Young-Gon ; Jeong, Bo Gyeong ; Park, Bum Jin ; Kim, Heejin ; Lee, Min Wook ; Jo, Seong Mu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e528277cb2104df0bf54aa2981b918f41b71a591923e0ed133db3508258d68023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ceramic glazes</topic><topic>Electric vehicles</topic><topic>Electrolytes</topic><topic>Electrospinning</topic><topic>Fluorides</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Morphology</topic><topic>Open circuit voltage</topic><topic>Polymers</topic><topic>Polyolefins</topic><topic>Polyvinylidene fluorides</topic><topic>Porous silicon</topic><topic>Protective coatings</topic><topic>Rechargeable batteries</topic><topic>Scanning electron microscopy</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Skin</topic><topic>Skin resistance</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>Thickness</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Young-Gon</creatorcontrib><creatorcontrib>Jeong, Bo Gyeong</creatorcontrib><creatorcontrib>Park, Bum Jin</creatorcontrib><creatorcontrib>Kim, Heejin</creatorcontrib><creatorcontrib>Lee, Min Wook</creatorcontrib><creatorcontrib>Jo, Seong Mu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Young-Gon</au><au>Jeong, Bo Gyeong</au><au>Park, Bum Jin</au><au>Kim, Heejin</au><au>Lee, Min Wook</au><au>Jo, Seong Mu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-06-26</date><risdate>2024</risdate><volume>16</volume><issue>13</issue><spage>1810</spage><pages>1810-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Porous silicon dioxide (SiO )/poly(vinylidene fluoride) (PVdF), SiO /PVdF, and fibrous composite membranes were prepared by electrospinning a blend solution of a SiO sol-gel/PVdF. The nanofibers of the SiO /PVdF (3/7 wt. ratio) blend comprised skin and nanofibrillar structures which were obtained from the SiO component. The thickness of the SiO skin layer comprising a thin skin layer could be readily tuned depending on the weight proportions of SiO and PVdF. The composite membrane exhibited a low thermal shrinkage of ~3% for 2 h at 200 °C. In the prototype cell comprising the composite membrane, the alternating current impedance increased rapidly at ~225 °C, and the open-circuit voltage steeply decreased at ~170 °C, almost becoming 0 V at ~180 °C. After being exposed at temperatures of &gt;270 °C, its three-dimensional network structure was maintained without the closure of the pore structure by a melt-down of the membrane.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39000665</pmid><doi>10.3390/polym16131810</doi><orcidid>https://orcid.org/0000-0003-3256-1067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-06, Vol.16 (13), p.1810
issn 2073-4360
2073-4360
language eng
recordid cdi_proquest_miscellaneous_3079859823
source Publicly Available Content Database; PubMed Central
subjects Ceramic glazes
Electric vehicles
Electrolytes
Electrospinning
Fluorides
Lithium
Lithium ions
Mechanical properties
Membranes
Morphology
Open circuit voltage
Polymers
Polyolefins
Polyvinylidene fluorides
Porous silicon
Protective coatings
Rechargeable batteries
Scanning electron microscopy
Silica
Silicon dioxide
Skin
Skin resistance
Sol-gel processes
Spectrum analysis
Temperature
Thickness
Vinylidene fluoride
title Electrospun Silicon Dioxide/poly(vinylidene fluoride) Nanofibrous Membrane Comprising a Skin Multicore-Shell Nanostructure as a New High-Heat-Resistant Separator for Lithium-Ion Polymer Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20Silicon%20Dioxide/poly(vinylidene%20fluoride)%20Nanofibrous%20Membrane%20Comprising%20a%20Skin%20Multicore-Shell%20Nanostructure%20as%20a%20New%20High-Heat-Resistant%20Separator%20for%20Lithium-Ion%20Polymer%20Batteries&rft.jtitle=Polymers&rft.au=Kim,%20Young-Gon&rft.date=2024-06-26&rft.volume=16&rft.issue=13&rft.spage=1810&rft.pages=1810-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16131810&rft_dat=%3Cproquest_cross%3E3079859823%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e528277cb2104df0bf54aa2981b918f41b71a591923e0ed133db3508258d68023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3079097832&rft_id=info:pmid/39000665&rfr_iscdi=true