Loading…
Investigation on the Biaxial Flexural Strength of Universal Shade Resin-Based Composites
The biaxial flexural strength of universal shade and conventional dental resin-based composites before and after alkaline degradation was investigated. Disk samples were prepared from these resin-based composites, and some of the specimens were immersed in 0.1 M NaOH solution to create deteriorated...
Saved in:
Published in: | Polymers 2024-06, Vol.16 (13), p.1853 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The biaxial flexural strength of universal shade and conventional dental resin-based composites before and after alkaline degradation was investigated. Disk samples were prepared from these resin-based composites, and some of the specimens were immersed in 0.1 M NaOH solution to create deteriorated samples. The biaxial flexural strength of the samples before and after the alkaline degradation test was measured and statistically tested. The fracture surfaces after the biaxial flexural test were observed using a scanning electron microscope. The results showed that the biaxial flexural strength of the paste-type universal shade resin-based composite before alkaline degradation was significantly (19%) higher than that of the conventional type, but no difference was observed between the materials after alkaline degradation. On the other hand, the biaxial flexural strength of the flowable universal shade resin-based composites was significantly (around 35%) lower than that of the conventional composite, with or without degradation. Although, for paste-type materials, the biaxial flexural strength of universal shade resin-based composites was higher than that of conventional resin-based composites before alkaline degradation, after degradation the two materials showed similar values. For flowable materials, the biaxial flexural strength of universal shade resin-based composites was lower than that of conventional resin-based composites regardless of the presence or absence of degradation processes. These results suggest that some caution should be used when deciding whether to use flowable universal shade resin-based composite to fill a cavity. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym16131853 |