Loading…

Stabilization of Eversa® Transform 2.0 lipase with sorbitol to enhance the efficiency of ultrasound-assisted biodiesel production

Ultrasound technology has emerged as a promising tool for enhancing enzymatic biodiesel production, yet the cavitation effect induced can compromise enzyme stability. This study explored the efficiency of polyols in enhancing lipase stability under ultrasound conditions to further improve biodiesel...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-09, Vol.276 (Pt 1), p.133817, Article 133817
Main Authors: Liow, Min Ying, Chan, Eng-Seng, Ng, Wei Zhe, Song, Cher Pin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrasound technology has emerged as a promising tool for enhancing enzymatic biodiesel production, yet the cavitation effect induced can compromise enzyme stability. This study explored the efficiency of polyols in enhancing lipase stability under ultrasound conditions to further improve biodiesel yield. The incorporation of sorbitol resulted in the highest fatty acid methyl ester (FAME) content in the ultrasound-assisted biodiesel production catalyzed by Eversa® Transform 2.0 among the investigated polyols. Furthermore, sorbitol enhanced the stability of the lipase, allowing it to tolerate up to 100 % ultrasound amplitude, compared to 60 % amplitude in its absence. Enzyme activity assays revealed that sorbitol preserved 99 % of the lipase activity, in contrast to 84 % retention observed without sorbitol under an 80 % ultrasound amplitude. Circular dichroism (CD) and fluorescence spectroscopy analyses confirmed that sorbitol enhanced lipase rigidity and preserved its conformational structure under ultrasound exposure. Furthermore, employing a stepwise methanol addition strategy in ultrasound-assisted reactions with sorbitol achieved an 81.2 wt% FAME content in 8 h with only 0.2 wt% enzyme concentration. This promising result highlights the potential of sorbitol as a stabilizing agent in ultrasound-assisted enzymatic biodiesel production, offering a viable approach for enhancing biodiesel yield and enzyme stability in industrial applications.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.133817