Loading…

Analyzing the intrastate and interstate swine movement network in the United States

Identifying and restricting animal movements is a common approach used to mitigate the spread of diseases between premises in livestock systems. Therefore, it is essential to uncover between-premises movement dynamics, including shipment distances and network-based control strategies. Here, we analy...

Full description

Saved in:
Bibliographic Details
Published in:Preventive veterinary medicine 2024-09, Vol.230, p.106264, Article 106264
Main Authors: Cardenas, Nicolas C., Valencio, Arthur, Sanchez, Felipe, O’Hara, Kathleen C., Machado, Gustavo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Identifying and restricting animal movements is a common approach used to mitigate the spread of diseases between premises in livestock systems. Therefore, it is essential to uncover between-premises movement dynamics, including shipment distances and network-based control strategies. Here, we analyzed three years of between-premises pig movements, which include 197,022 unique animal shipments, 3973 premises, and 391,625,374 pigs shipped across 20 U.S. states. We constructed unweighted, directed, temporal networks at 180-day intervals to calculate premises-to-premises movement distances, the size of connected components, network loyalty, and degree distributions, and, based on the out-going contact chains, identified network-based control actions. Our results show that the median distance between premises pig movements was 74.37 km, with median intrastate and interstate movements of 52.71 km and 328.76 km, respectively. On average, 2842 premises were connected via 6705 edges, resulting in a weak giant connected component that included 91 % of the premises. The premises-level network exhibited loyalty, with a median of 0.65 (IQR: 0.45 – 0.77). Results highlight the effectiveness of node targeting to reduce the risk of disease spread; we demonstrated that targeting 25 % of farms with the highest degree or betweenness limited spread to 1.23 % and 1.7 % of premises, respectively. While there is no complete shipment data for the entire U.S., our multi-state movement analysis demonstrated the value and the needs of such data for enhancing the design and implementation of proactive­ disease control tactics.
ISSN:0167-5877
1873-1716
1873-1716
DOI:10.1016/j.prevetmed.2024.106264