Loading…

Voltage-induced modulation of interfacial ionic liquids measured using surface plasmon resonant grating nanostructures

We have used surface plasmon resonant metal gratings to induce and probe the dielectric response (i.e., electro-optic modulation) of ionic liquids (ILs) at electrode interfaces. Here, the cross-plane electric field at the electrode surface modulates the refractive index of the IL due to the Pockels...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2024-07, Vol.161 (3)
Main Authors: Aravind, Indu, Wang, Yu, Cai, Zhi, Li, Ruoxi, Shahriar, Rifat, Gibson, George N., Guignon, Ernest, Cady, Nathaniel C., Page, William D., Pilar, Arturo, Cronin, Stephen B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c308t-98d0b20bb24baba529362553b194382e9e700ebfc8c34aaec380ca96ce7e63e33
container_end_page
container_issue 3
container_start_page
container_title The Journal of chemical physics
container_volume 161
creator Aravind, Indu
Wang, Yu
Cai, Zhi
Li, Ruoxi
Shahriar, Rifat
Gibson, George N.
Guignon, Ernest
Cady, Nathaniel C.
Page, William D.
Pilar, Arturo
Cronin, Stephen B.
description We have used surface plasmon resonant metal gratings to induce and probe the dielectric response (i.e., electro-optic modulation) of ionic liquids (ILs) at electrode interfaces. Here, the cross-plane electric field at the electrode surface modulates the refractive index of the IL due to the Pockels effect. This is observed as a shift in the resonant angle of the grating (i.e., Δϕ), which can be related to the change in the local index of refraction of the electrolyte (i.e., Δnlocal). The reflection modulation of the IL is compared against a polar (D2O) and a non-polar solvent (benzene) to confirm the electro-optic origin of resonance shift. The electrostatic accumulation of ions from the IL induces local index changes to the gratings over the extent of electrical double layer (EDL) thickness. Finite difference time domain simulations are used to relate the observed shifts in the plasmon resonance and change in reflection to the change in the local index of refraction of the electrolyte and the thickness of the EDL. Simultaneously using the wavelength and intensity shift of the resonance enables us to determine both the effective thickness and Δn of the double layer. We believe that this technique can be used more broadly, allowing the dynamics associated with the potential-induced ordering and rearrangement of ionic species in electrode–solution interfaces.
doi_str_mv 10.1063/5.0202642
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3080636845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080845415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-98d0b20bb24baba529362553b194382e9e700ebfc8c34aaec380ca96ce7e63e33</originalsourceid><addsrcrecordid>eNp90UtLxDAQB_Agiq6Pg19AAl5U6DpN2rQ5yuILBC_qtaTpdIm0zZqH4Lc3uqsHD57y4Df_hBlCjnOY5yD4ZTkHBkwUbIvMcqhlVgkJ22QGwPJMChB7ZN_7VwDIK1bskj0uASpeVzPy_mKHoJaYmamLGjs62i4OKhg7UdtTMwV0vdJGDTRdGU0H8xZN5-mIykeXCqI305KmfWJIV4PyY6p16O2kpkCXLoUlkA7WBxd1SFX-kOz0avB4tFkPyPPN9dPiLnt4vL1fXD1kmkMdMll30DJoW1a0qlUlk1ywsuRtLgteM5RYAWDb61rzQinUvAatpNBYoeDI-QE5W-eunH2L6EMzGq9xGNSENvomvZIaKOqiTPT0D3210U3pd98qkSL_UudrpZ313mHfrJwZlftocmi-htGUzWYYyZ5sEmM7Yvcrf7qfwMUaeG3Cd8__SfsEvJuTdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080845415</pqid></control><display><type>article</type><title>Voltage-induced modulation of interfacial ionic liquids measured using surface plasmon resonant grating nanostructures</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Aravind, Indu ; Wang, Yu ; Cai, Zhi ; Li, Ruoxi ; Shahriar, Rifat ; Gibson, George N. ; Guignon, Ernest ; Cady, Nathaniel C. ; Page, William D. ; Pilar, Arturo ; Cronin, Stephen B.</creator><creatorcontrib>Aravind, Indu ; Wang, Yu ; Cai, Zhi ; Li, Ruoxi ; Shahriar, Rifat ; Gibson, George N. ; Guignon, Ernest ; Cady, Nathaniel C. ; Page, William D. ; Pilar, Arturo ; Cronin, Stephen B.</creatorcontrib><description>We have used surface plasmon resonant metal gratings to induce and probe the dielectric response (i.e., electro-optic modulation) of ionic liquids (ILs) at electrode interfaces. Here, the cross-plane electric field at the electrode surface modulates the refractive index of the IL due to the Pockels effect. This is observed as a shift in the resonant angle of the grating (i.e., Δϕ), which can be related to the change in the local index of refraction of the electrolyte (i.e., Δnlocal). The reflection modulation of the IL is compared against a polar (D2O) and a non-polar solvent (benzene) to confirm the electro-optic origin of resonance shift. The electrostatic accumulation of ions from the IL induces local index changes to the gratings over the extent of electrical double layer (EDL) thickness. Finite difference time domain simulations are used to relate the observed shifts in the plasmon resonance and change in reflection to the change in the local index of refraction of the electrolyte and the thickness of the EDL. Simultaneously using the wavelength and intensity shift of the resonance enables us to determine both the effective thickness and Δn of the double layer. We believe that this technique can be used more broadly, allowing the dynamics associated with the potential-induced ordering and rearrangement of ionic species in electrode–solution interfaces.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0202642</identifier><identifier>PMID: 39007387</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Benzene ; Electric double layer ; Electric fields ; Electrodes ; Electrolytes ; Finite difference time domain method ; Gratings (spectra) ; Ionic liquids ; Modulation ; Reflection ; Refraction ; Refractivity ; Surface plasmon resonance ; Thickness</subject><ispartof>The Journal of chemical physics, 2024-07, Vol.161 (3)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-98d0b20bb24baba529362553b194382e9e700ebfc8c34aaec380ca96ce7e63e33</cites><orcidid>0000-0003-1245-6753 ; 0000-0003-4345-3627 ; 0009-0009-3116-9478 ; 0000-0001-9153-7687 ; 0000-0002-3741-5715 ; 0000-0002-0307-1301 ; 0000-0002-6432-6072 ; 0000-0002-0908-9887 ; 0000-0002-7537-2680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0202642$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27900,27901,76351</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39007387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aravind, Indu</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Cai, Zhi</creatorcontrib><creatorcontrib>Li, Ruoxi</creatorcontrib><creatorcontrib>Shahriar, Rifat</creatorcontrib><creatorcontrib>Gibson, George N.</creatorcontrib><creatorcontrib>Guignon, Ernest</creatorcontrib><creatorcontrib>Cady, Nathaniel C.</creatorcontrib><creatorcontrib>Page, William D.</creatorcontrib><creatorcontrib>Pilar, Arturo</creatorcontrib><creatorcontrib>Cronin, Stephen B.</creatorcontrib><title>Voltage-induced modulation of interfacial ionic liquids measured using surface plasmon resonant grating nanostructures</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We have used surface plasmon resonant metal gratings to induce and probe the dielectric response (i.e., electro-optic modulation) of ionic liquids (ILs) at electrode interfaces. Here, the cross-plane electric field at the electrode surface modulates the refractive index of the IL due to the Pockels effect. This is observed as a shift in the resonant angle of the grating (i.e., Δϕ), which can be related to the change in the local index of refraction of the electrolyte (i.e., Δnlocal). The reflection modulation of the IL is compared against a polar (D2O) and a non-polar solvent (benzene) to confirm the electro-optic origin of resonance shift. The electrostatic accumulation of ions from the IL induces local index changes to the gratings over the extent of electrical double layer (EDL) thickness. Finite difference time domain simulations are used to relate the observed shifts in the plasmon resonance and change in reflection to the change in the local index of refraction of the electrolyte and the thickness of the EDL. Simultaneously using the wavelength and intensity shift of the resonance enables us to determine both the effective thickness and Δn of the double layer. We believe that this technique can be used more broadly, allowing the dynamics associated with the potential-induced ordering and rearrangement of ionic species in electrode–solution interfaces.</description><subject>Benzene</subject><subject>Electric double layer</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Finite difference time domain method</subject><subject>Gratings (spectra)</subject><subject>Ionic liquids</subject><subject>Modulation</subject><subject>Reflection</subject><subject>Refraction</subject><subject>Refractivity</subject><subject>Surface plasmon resonance</subject><subject>Thickness</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90UtLxDAQB_Agiq6Pg19AAl5U6DpN2rQ5yuILBC_qtaTpdIm0zZqH4Lc3uqsHD57y4Df_hBlCjnOY5yD4ZTkHBkwUbIvMcqhlVgkJ22QGwPJMChB7ZN_7VwDIK1bskj0uASpeVzPy_mKHoJaYmamLGjs62i4OKhg7UdtTMwV0vdJGDTRdGU0H8xZN5-mIykeXCqI305KmfWJIV4PyY6p16O2kpkCXLoUlkA7WBxd1SFX-kOz0avB4tFkPyPPN9dPiLnt4vL1fXD1kmkMdMll30DJoW1a0qlUlk1ywsuRtLgteM5RYAWDb61rzQinUvAatpNBYoeDI-QE5W-eunH2L6EMzGq9xGNSENvomvZIaKOqiTPT0D3210U3pd98qkSL_UudrpZ313mHfrJwZlftocmi-htGUzWYYyZ5sEmM7Yvcrf7qfwMUaeG3Cd8__SfsEvJuTdA</recordid><startdate>20240721</startdate><enddate>20240721</enddate><creator>Aravind, Indu</creator><creator>Wang, Yu</creator><creator>Cai, Zhi</creator><creator>Li, Ruoxi</creator><creator>Shahriar, Rifat</creator><creator>Gibson, George N.</creator><creator>Guignon, Ernest</creator><creator>Cady, Nathaniel C.</creator><creator>Page, William D.</creator><creator>Pilar, Arturo</creator><creator>Cronin, Stephen B.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1245-6753</orcidid><orcidid>https://orcid.org/0000-0003-4345-3627</orcidid><orcidid>https://orcid.org/0009-0009-3116-9478</orcidid><orcidid>https://orcid.org/0000-0001-9153-7687</orcidid><orcidid>https://orcid.org/0000-0002-3741-5715</orcidid><orcidid>https://orcid.org/0000-0002-0307-1301</orcidid><orcidid>https://orcid.org/0000-0002-6432-6072</orcidid><orcidid>https://orcid.org/0000-0002-0908-9887</orcidid><orcidid>https://orcid.org/0000-0002-7537-2680</orcidid></search><sort><creationdate>20240721</creationdate><title>Voltage-induced modulation of interfacial ionic liquids measured using surface plasmon resonant grating nanostructures</title><author>Aravind, Indu ; Wang, Yu ; Cai, Zhi ; Li, Ruoxi ; Shahriar, Rifat ; Gibson, George N. ; Guignon, Ernest ; Cady, Nathaniel C. ; Page, William D. ; Pilar, Arturo ; Cronin, Stephen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-98d0b20bb24baba529362553b194382e9e700ebfc8c34aaec380ca96ce7e63e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benzene</topic><topic>Electric double layer</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Finite difference time domain method</topic><topic>Gratings (spectra)</topic><topic>Ionic liquids</topic><topic>Modulation</topic><topic>Reflection</topic><topic>Refraction</topic><topic>Refractivity</topic><topic>Surface plasmon resonance</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aravind, Indu</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Cai, Zhi</creatorcontrib><creatorcontrib>Li, Ruoxi</creatorcontrib><creatorcontrib>Shahriar, Rifat</creatorcontrib><creatorcontrib>Gibson, George N.</creatorcontrib><creatorcontrib>Guignon, Ernest</creatorcontrib><creatorcontrib>Cady, Nathaniel C.</creatorcontrib><creatorcontrib>Page, William D.</creatorcontrib><creatorcontrib>Pilar, Arturo</creatorcontrib><creatorcontrib>Cronin, Stephen B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aravind, Indu</au><au>Wang, Yu</au><au>Cai, Zhi</au><au>Li, Ruoxi</au><au>Shahriar, Rifat</au><au>Gibson, George N.</au><au>Guignon, Ernest</au><au>Cady, Nathaniel C.</au><au>Page, William D.</au><au>Pilar, Arturo</au><au>Cronin, Stephen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-induced modulation of interfacial ionic liquids measured using surface plasmon resonant grating nanostructures</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-07-21</date><risdate>2024</risdate><volume>161</volume><issue>3</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We have used surface plasmon resonant metal gratings to induce and probe the dielectric response (i.e., electro-optic modulation) of ionic liquids (ILs) at electrode interfaces. Here, the cross-plane electric field at the electrode surface modulates the refractive index of the IL due to the Pockels effect. This is observed as a shift in the resonant angle of the grating (i.e., Δϕ), which can be related to the change in the local index of refraction of the electrolyte (i.e., Δnlocal). The reflection modulation of the IL is compared against a polar (D2O) and a non-polar solvent (benzene) to confirm the electro-optic origin of resonance shift. The electrostatic accumulation of ions from the IL induces local index changes to the gratings over the extent of electrical double layer (EDL) thickness. Finite difference time domain simulations are used to relate the observed shifts in the plasmon resonance and change in reflection to the change in the local index of refraction of the electrolyte and the thickness of the EDL. Simultaneously using the wavelength and intensity shift of the resonance enables us to determine both the effective thickness and Δn of the double layer. We believe that this technique can be used more broadly, allowing the dynamics associated with the potential-induced ordering and rearrangement of ionic species in electrode–solution interfaces.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39007387</pmid><doi>10.1063/5.0202642</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1245-6753</orcidid><orcidid>https://orcid.org/0000-0003-4345-3627</orcidid><orcidid>https://orcid.org/0009-0009-3116-9478</orcidid><orcidid>https://orcid.org/0000-0001-9153-7687</orcidid><orcidid>https://orcid.org/0000-0002-3741-5715</orcidid><orcidid>https://orcid.org/0000-0002-0307-1301</orcidid><orcidid>https://orcid.org/0000-0002-6432-6072</orcidid><orcidid>https://orcid.org/0000-0002-0908-9887</orcidid><orcidid>https://orcid.org/0000-0002-7537-2680</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-07, Vol.161 (3)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_proquest_miscellaneous_3080636845
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Benzene
Electric double layer
Electric fields
Electrodes
Electrolytes
Finite difference time domain method
Gratings (spectra)
Ionic liquids
Modulation
Reflection
Refraction
Refractivity
Surface plasmon resonance
Thickness
title Voltage-induced modulation of interfacial ionic liquids measured using surface plasmon resonant grating nanostructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-induced%20modulation%20of%20interfacial%20ionic%20liquids%20measured%20using%20surface%20plasmon%20resonant%20grating%20nanostructures&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Aravind,%20Indu&rft.date=2024-07-21&rft.volume=161&rft.issue=3&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0202642&rft_dat=%3Cproquest_pubme%3E3080845415%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-98d0b20bb24baba529362553b194382e9e700ebfc8c34aaec380ca96ce7e63e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3080845415&rft_id=info:pmid/39007387&rfr_iscdi=true