Loading…
Methane-rich saline ameliorates depressive-like behaviors during chronic unpredictable mild stress (CUMS)
Depression, considered the most prevalent neuropsychiatric disorder, is multifactorial and complex. Oxidative stress and inflammation significantly contribute to its etiology. Conversely, methane, a novel therapeutic gas, has demonstrated efficacy in enhancing tissue resilience against ischemic inju...
Saved in:
Published in: | Naunyn-Schmiedeberg's archives of pharmacology 2024-12, Vol.397 (12), p.10203-10213 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Depression, considered the most prevalent neuropsychiatric disorder, is multifactorial and complex. Oxidative stress and inflammation significantly contribute to its etiology. Conversely, methane, a novel therapeutic gas, has demonstrated efficacy in enhancing tissue resilience against ischemic injuries and inflammation. In this study, we investigated the effect of methane-rich saline (MRS) on depression using the chronic unpredictable mild stress (CUMS) model. Depressed rats received MRS treatment, and depression-like behaviors and cognitive function were assessed through sucrose preference, open field, forced swimming, and Morris water maze tests. Additionally, we measured serum corticosterone levels, antioxidant enzyme activity, hippocampal malondialdehyde (MDA), and TNFα levels, and investigated histological changes in the hippocampus. Our findings revealed that MRS significantly ameliorated Depressive-like behaviors and cognitive impairment. Furthermore, MRS administration regulated serum corticosterone levels and also MRS reduced hippocampal lipid peroxidation, TNFα, and hippocampus tissue damage. MRS likely exerts its effects by reducing oxidative stress and inflammatory factors and modulating the function of the hypothalamus-pituitary-adrenal (HPA) axis. These results demonstrate the protective effects of MRS on the hippocampus in CUMS animals. |
---|---|
ISSN: | 0028-1298 1432-1912 1432-1912 |
DOI: | 10.1007/s00210-024-03284-4 |