Loading…

Methane-rich saline ameliorates depressive-like behaviors during chronic unpredictable mild stress (CUMS)

Depression, considered the most prevalent neuropsychiatric disorder, is multifactorial and complex. Oxidative stress and inflammation significantly contribute to its etiology. Conversely, methane, a novel therapeutic gas, has demonstrated efficacy in enhancing tissue resilience against ischemic inju...

Full description

Saved in:
Bibliographic Details
Published in:Naunyn-Schmiedeberg's archives of pharmacology 2024-12, Vol.397 (12), p.10203-10213
Main Authors: Nasab, Mohammad Ghaffari, Rezvani, Mohammad Ebrahim, Hosseini, Seyed Mohammad Sadegh, Mehrjerdi, Fatemeh Zare
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Depression, considered the most prevalent neuropsychiatric disorder, is multifactorial and complex. Oxidative stress and inflammation significantly contribute to its etiology. Conversely, methane, a novel therapeutic gas, has demonstrated efficacy in enhancing tissue resilience against ischemic injuries and inflammation. In this study, we investigated the effect of methane-rich saline (MRS) on depression using the chronic unpredictable mild stress (CUMS) model. Depressed rats received MRS treatment, and depression-like behaviors and cognitive function were assessed through sucrose preference, open field, forced swimming, and Morris water maze tests. Additionally, we measured serum corticosterone levels, antioxidant enzyme activity, hippocampal malondialdehyde (MDA), and TNFα levels, and investigated histological changes in the hippocampus. Our findings revealed that MRS significantly ameliorated Depressive-like behaviors and cognitive impairment. Furthermore, MRS administration regulated serum corticosterone levels and also MRS reduced hippocampal lipid peroxidation, TNFα, and hippocampus tissue damage. MRS likely exerts its effects by reducing oxidative stress and inflammatory factors and modulating the function of the hypothalamus-pituitary-adrenal (HPA) axis. These results demonstrate the protective effects of MRS on the hippocampus in CUMS animals.
ISSN:0028-1298
1432-1912
1432-1912
DOI:10.1007/s00210-024-03284-4