Loading…
Tomato pomace-derived nitrated fatty acids: Synthesis and antiplatelet activity
This study investigates the antiplatelet properties of tomato pulp to combat cardiovascular diseases. Notably, it examines the formation of nitrated fatty acids (NO2-FA) in tomato pomace, renowned for its potential antiplatelet effects. Through diverse assays, including tandem mass spectrometry, mic...
Saved in:
Published in: | Biomedicine & pharmacotherapy 2024-08, Vol.177, p.117154, Article 117154 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the antiplatelet properties of tomato pulp to combat cardiovascular diseases. Notably, it examines the formation of nitrated fatty acids (NO2-FA) in tomato pomace, renowned for its potential antiplatelet effects. Through diverse assays, including tandem mass spectrometry, microplate-based platelet aggregation, and flow cytometry, the research identifies NO2-OA, NO2-LA, and NO2-LnA as pivotal antiplatelet compounds. It demonstrates the concentration-dependent antiplatelet effects of nitrated tomato pomace against thrombin receptor activator peptide 6 (TRAP-6) and collagen-induced platelet activation, alongside the modulation of platelet activation markers. Additionally, synergistic effects were observed with nitrated tomato pomace extracts. The findings suggest therapeutic potential for NO2-FA derived from tomato pomace in preventing blood clot formation, with nitrated extracts exhibiting superior efficacy compared to non-nitrated ones. This research highlights the promising role of natural products, such as tomato pomace, in mitigating cardiovascular risks and proposes novel strategies for population health enhancement and cardiovascular disease management.
[Display omitted]
•Investigates antiplatelet properties of tomato pomace.•Emphasis on NO2-FA formation & crucial compounds.•Concentration-dependent effects in platelets suggesting therapeutic potential.•Synergistic efficacy of nitrated extracts, advocating for innovative health approaches. |
---|---|
ISSN: | 0753-3322 1950-6007 1950-6007 |
DOI: | 10.1016/j.biopha.2024.117154 |