Loading…

National-scale antimicrobial resistance surveillance in wastewater: A comparative analysis of HT qPCR and metagenomic approaches

•HT qPCR detected all 73 targeted ARGs, while metagenomics detected 491 ARGs.•HT qPCR was more sensitive to low abundance genes, detecting all target ARGs.•Both methods enabled the spatiotemporal separation of hospital and WWTP resistomes.•Metagenomics provided contextual data making it more suitabl...

Full description

Saved in:
Bibliographic Details
Published in:Water research (Oxford) 2024-09, Vol.262, p.121989, Article 121989
Main Authors: Knight, Margaret E., Webster, Gordon, Perry, William B., Baldwin, Amy, Rushton, Laura, Pass, Daniel A., Cross, Gareth, Durance, Isabelle, Muziasari, Windi, Kille, Peter, Farkas, Kata, Weightman, Andrew J., Jones, Davey L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c241t-39ca1e2f3165ddbe6f2bd5d3307e8572788012c650aaab27c07a42a51491e8613
container_end_page
container_issue
container_start_page 121989
container_title Water research (Oxford)
container_volume 262
creator Knight, Margaret E.
Webster, Gordon
Perry, William B.
Baldwin, Amy
Rushton, Laura
Pass, Daniel A.
Cross, Gareth
Durance, Isabelle
Muziasari, Windi
Kille, Peter
Farkas, Kata
Weightman, Andrew J.
Jones, Davey L.
description •HT qPCR detected all 73 targeted ARGs, while metagenomics detected 491 ARGs.•HT qPCR was more sensitive to low abundance genes, detecting all target ARGs.•Both methods enabled the spatiotemporal separation of hospital and WWTP resistomes.•Metagenomics provided contextual data making it more suitable for risk assessment.•HT qPCR permitted more sensitive quantification of clinically relevant AMR genes. Wastewater serves as an important reservoir of antimicrobial resistance (AMR), and its surveillance can provide insights into population-level trends in AMR to inform public health policy. This study compared two common high-throughput screening approaches, namely (i) high-throughput quantitative PCR (HT qPCR), targeting 73 antimicrobial resistance genes, and (ii) metagenomic sequencing. Weekly composite samples of wastewater influent were taken from 47 wastewater treatment plants (WWTPs) across Wales, as part of a national AMR surveillance programme, alongside 4 weeks of daily wastewater effluent samples from a large municipal hospital. Metagenomic analysis provided more comprehensive resistome coverage, detecting 545 genes compared to the targeted 73 genes by HT qPCR. It further provided contextual information critical to risk assessment (i.e. potential bacterial hosts). In contrast, HT qPCR exhibited higher sensitivity, quantifying all targeted genes including those of clinical relevance present at low abundance. When limited to the HT qPCR target genes, both methods were able to reflect the spatiotemporal dynamics of the complete metagenomic resistome, distinguishing that of the hospital and the WWTPs. Both approaches revealed correlations between resistome compositional shifts and environmental variables like ammonium wastewater concentration, though differed in their interpretation of some potential influencing factors. Overall, metagenomics provides more comprehensive resistome profiling, while qPCR permits sensitive quantification of genes significant to clinical resistance. We highlight the importance of selecting appropriate methodologies aligned to surveillance aims to guide the development of effective wastewater-based AMR monitoring programmes. [Display omitted]
doi_str_mv 10.1016/j.watres.2024.121989
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082306067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135424008820</els_id><sourcerecordid>3082306067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-39ca1e2f3165ddbe6f2bd5d3307e8572788012c650aaab27c07a42a51491e8613</originalsourceid><addsrcrecordid>eNp9kEtv1DAQxy1ERbeFb4CQj1yyjB9JHA5I1QpapIoiVM7WxJmAV3lsbe9WvfHR620KR04jj_4Pz4-xtwLWAkT1Ybu-xxQoriVIvRZSNKZ5wVbC1E0htTYv2QpAq0KoUp-ysxi3ACClal6xU9WAMKXRK_bnGyY_TzgU0eFAHKfkR-_C3HoceI73MeHkiMd9OJAfhqeHn_g9xkT5BxQ-8gvu5nGHIUcdjhE4PGQfn3t-dcvvvm9-5F3HR0r4i6Y5x3Pc7cKM7jfF1-ykxyHSm-d5zn5--Xy7uSquby6_bi6uCye1SIVqHAqSvRJV2XUtVb1su7JTCmoyZS1rY0BIV5WAiK2sHdSoJZZCN4JMJdQ5e7_k5uK7PcVkRx8dHQ-ieR-tAiMVVFDVWaoXacYQY6De7oIfMTxYAfbI3m7twt4e2duFfba9e27YtyN1_0x_YWfBp0VA-c6Dp2Cj85R5dj6QS7ab_f8bHgEUrZkW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082306067</pqid></control><display><type>article</type><title>National-scale antimicrobial resistance surveillance in wastewater: A comparative analysis of HT qPCR and metagenomic approaches</title><source>Elsevier</source><creator>Knight, Margaret E. ; Webster, Gordon ; Perry, William B. ; Baldwin, Amy ; Rushton, Laura ; Pass, Daniel A. ; Cross, Gareth ; Durance, Isabelle ; Muziasari, Windi ; Kille, Peter ; Farkas, Kata ; Weightman, Andrew J. ; Jones, Davey L.</creator><creatorcontrib>Knight, Margaret E. ; Webster, Gordon ; Perry, William B. ; Baldwin, Amy ; Rushton, Laura ; Pass, Daniel A. ; Cross, Gareth ; Durance, Isabelle ; Muziasari, Windi ; Kille, Peter ; Farkas, Kata ; Weightman, Andrew J. ; Jones, Davey L.</creatorcontrib><description>•HT qPCR detected all 73 targeted ARGs, while metagenomics detected 491 ARGs.•HT qPCR was more sensitive to low abundance genes, detecting all target ARGs.•Both methods enabled the spatiotemporal separation of hospital and WWTP resistomes.•Metagenomics provided contextual data making it more suitable for risk assessment.•HT qPCR permitted more sensitive quantification of clinically relevant AMR genes. Wastewater serves as an important reservoir of antimicrobial resistance (AMR), and its surveillance can provide insights into population-level trends in AMR to inform public health policy. This study compared two common high-throughput screening approaches, namely (i) high-throughput quantitative PCR (HT qPCR), targeting 73 antimicrobial resistance genes, and (ii) metagenomic sequencing. Weekly composite samples of wastewater influent were taken from 47 wastewater treatment plants (WWTPs) across Wales, as part of a national AMR surveillance programme, alongside 4 weeks of daily wastewater effluent samples from a large municipal hospital. Metagenomic analysis provided more comprehensive resistome coverage, detecting 545 genes compared to the targeted 73 genes by HT qPCR. It further provided contextual information critical to risk assessment (i.e. potential bacterial hosts). In contrast, HT qPCR exhibited higher sensitivity, quantifying all targeted genes including those of clinical relevance present at low abundance. When limited to the HT qPCR target genes, both methods were able to reflect the spatiotemporal dynamics of the complete metagenomic resistome, distinguishing that of the hospital and the WWTPs. Both approaches revealed correlations between resistome compositional shifts and environmental variables like ammonium wastewater concentration, though differed in their interpretation of some potential influencing factors. Overall, metagenomics provides more comprehensive resistome profiling, while qPCR permits sensitive quantification of genes significant to clinical resistance. We highlight the importance of selecting appropriate methodologies aligned to surveillance aims to guide the development of effective wastewater-based AMR monitoring programmes. [Display omitted]</description><identifier>ISSN: 0043-1354</identifier><identifier>ISSN: 1879-2448</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2024.121989</identifier><identifier>PMID: 39018584</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>ARG ; Bacteria - drug effects ; Bacteria - genetics ; Drug Resistance, Bacterial - genetics ; Environmental Monitoring - methods ; Environmental reservoir ; Metagenomics - methods ; One Health approach ; Real-Time Polymerase Chain Reaction ; Wastewater - microbiology ; Wastewater-based epidemiology ; WBE strategy</subject><ispartof>Water research (Oxford), 2024-09, Vol.262, p.121989, Article 121989</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-39ca1e2f3165ddbe6f2bd5d3307e8572788012c650aaab27c07a42a51491e8613</cites><orcidid>0000-0001-9596-3333 ; 0009-0006-6875-3254 ; 0009-0005-9053-9337 ; 0000-0002-4643-6489 ; 0000-0002-1482-4209 ; 0000-0002-9530-7835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39018584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knight, Margaret E.</creatorcontrib><creatorcontrib>Webster, Gordon</creatorcontrib><creatorcontrib>Perry, William B.</creatorcontrib><creatorcontrib>Baldwin, Amy</creatorcontrib><creatorcontrib>Rushton, Laura</creatorcontrib><creatorcontrib>Pass, Daniel A.</creatorcontrib><creatorcontrib>Cross, Gareth</creatorcontrib><creatorcontrib>Durance, Isabelle</creatorcontrib><creatorcontrib>Muziasari, Windi</creatorcontrib><creatorcontrib>Kille, Peter</creatorcontrib><creatorcontrib>Farkas, Kata</creatorcontrib><creatorcontrib>Weightman, Andrew J.</creatorcontrib><creatorcontrib>Jones, Davey L.</creatorcontrib><title>National-scale antimicrobial resistance surveillance in wastewater: A comparative analysis of HT qPCR and metagenomic approaches</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>•HT qPCR detected all 73 targeted ARGs, while metagenomics detected 491 ARGs.•HT qPCR was more sensitive to low abundance genes, detecting all target ARGs.•Both methods enabled the spatiotemporal separation of hospital and WWTP resistomes.•Metagenomics provided contextual data making it more suitable for risk assessment.•HT qPCR permitted more sensitive quantification of clinically relevant AMR genes. Wastewater serves as an important reservoir of antimicrobial resistance (AMR), and its surveillance can provide insights into population-level trends in AMR to inform public health policy. This study compared two common high-throughput screening approaches, namely (i) high-throughput quantitative PCR (HT qPCR), targeting 73 antimicrobial resistance genes, and (ii) metagenomic sequencing. Weekly composite samples of wastewater influent were taken from 47 wastewater treatment plants (WWTPs) across Wales, as part of a national AMR surveillance programme, alongside 4 weeks of daily wastewater effluent samples from a large municipal hospital. Metagenomic analysis provided more comprehensive resistome coverage, detecting 545 genes compared to the targeted 73 genes by HT qPCR. It further provided contextual information critical to risk assessment (i.e. potential bacterial hosts). In contrast, HT qPCR exhibited higher sensitivity, quantifying all targeted genes including those of clinical relevance present at low abundance. When limited to the HT qPCR target genes, both methods were able to reflect the spatiotemporal dynamics of the complete metagenomic resistome, distinguishing that of the hospital and the WWTPs. Both approaches revealed correlations between resistome compositional shifts and environmental variables like ammonium wastewater concentration, though differed in their interpretation of some potential influencing factors. Overall, metagenomics provides more comprehensive resistome profiling, while qPCR permits sensitive quantification of genes significant to clinical resistance. We highlight the importance of selecting appropriate methodologies aligned to surveillance aims to guide the development of effective wastewater-based AMR monitoring programmes. [Display omitted]</description><subject>ARG</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental reservoir</subject><subject>Metagenomics - methods</subject><subject>One Health approach</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Wastewater - microbiology</subject><subject>Wastewater-based epidemiology</subject><subject>WBE strategy</subject><issn>0043-1354</issn><issn>1879-2448</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1DAQxy1ERbeFb4CQj1yyjB9JHA5I1QpapIoiVM7WxJmAV3lsbe9WvfHR620KR04jj_4Pz4-xtwLWAkT1Ybu-xxQoriVIvRZSNKZ5wVbC1E0htTYv2QpAq0KoUp-ysxi3ACClal6xU9WAMKXRK_bnGyY_TzgU0eFAHKfkR-_C3HoceI73MeHkiMd9OJAfhqeHn_g9xkT5BxQ-8gvu5nGHIUcdjhE4PGQfn3t-dcvvvm9-5F3HR0r4i6Y5x3Pc7cKM7jfF1-ykxyHSm-d5zn5--Xy7uSquby6_bi6uCye1SIVqHAqSvRJV2XUtVb1su7JTCmoyZS1rY0BIV5WAiK2sHdSoJZZCN4JMJdQ5e7_k5uK7PcVkRx8dHQ-ieR-tAiMVVFDVWaoXacYQY6De7oIfMTxYAfbI3m7twt4e2duFfba9e27YtyN1_0x_YWfBp0VA-c6Dp2Cj85R5dj6QS7ab_f8bHgEUrZkW</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Knight, Margaret E.</creator><creator>Webster, Gordon</creator><creator>Perry, William B.</creator><creator>Baldwin, Amy</creator><creator>Rushton, Laura</creator><creator>Pass, Daniel A.</creator><creator>Cross, Gareth</creator><creator>Durance, Isabelle</creator><creator>Muziasari, Windi</creator><creator>Kille, Peter</creator><creator>Farkas, Kata</creator><creator>Weightman, Andrew J.</creator><creator>Jones, Davey L.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9596-3333</orcidid><orcidid>https://orcid.org/0009-0006-6875-3254</orcidid><orcidid>https://orcid.org/0009-0005-9053-9337</orcidid><orcidid>https://orcid.org/0000-0002-4643-6489</orcidid><orcidid>https://orcid.org/0000-0002-1482-4209</orcidid><orcidid>https://orcid.org/0000-0002-9530-7835</orcidid></search><sort><creationdate>20240915</creationdate><title>National-scale antimicrobial resistance surveillance in wastewater: A comparative analysis of HT qPCR and metagenomic approaches</title><author>Knight, Margaret E. ; Webster, Gordon ; Perry, William B. ; Baldwin, Amy ; Rushton, Laura ; Pass, Daniel A. ; Cross, Gareth ; Durance, Isabelle ; Muziasari, Windi ; Kille, Peter ; Farkas, Kata ; Weightman, Andrew J. ; Jones, Davey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-39ca1e2f3165ddbe6f2bd5d3307e8572788012c650aaab27c07a42a51491e8613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ARG</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental reservoir</topic><topic>Metagenomics - methods</topic><topic>One Health approach</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Wastewater - microbiology</topic><topic>Wastewater-based epidemiology</topic><topic>WBE strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knight, Margaret E.</creatorcontrib><creatorcontrib>Webster, Gordon</creatorcontrib><creatorcontrib>Perry, William B.</creatorcontrib><creatorcontrib>Baldwin, Amy</creatorcontrib><creatorcontrib>Rushton, Laura</creatorcontrib><creatorcontrib>Pass, Daniel A.</creatorcontrib><creatorcontrib>Cross, Gareth</creatorcontrib><creatorcontrib>Durance, Isabelle</creatorcontrib><creatorcontrib>Muziasari, Windi</creatorcontrib><creatorcontrib>Kille, Peter</creatorcontrib><creatorcontrib>Farkas, Kata</creatorcontrib><creatorcontrib>Weightman, Andrew J.</creatorcontrib><creatorcontrib>Jones, Davey L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knight, Margaret E.</au><au>Webster, Gordon</au><au>Perry, William B.</au><au>Baldwin, Amy</au><au>Rushton, Laura</au><au>Pass, Daniel A.</au><au>Cross, Gareth</au><au>Durance, Isabelle</au><au>Muziasari, Windi</au><au>Kille, Peter</au><au>Farkas, Kata</au><au>Weightman, Andrew J.</au><au>Jones, Davey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>National-scale antimicrobial resistance surveillance in wastewater: A comparative analysis of HT qPCR and metagenomic approaches</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>262</volume><spage>121989</spage><pages>121989-</pages><artnum>121989</artnum><issn>0043-1354</issn><issn>1879-2448</issn><eissn>1879-2448</eissn><abstract>•HT qPCR detected all 73 targeted ARGs, while metagenomics detected 491 ARGs.•HT qPCR was more sensitive to low abundance genes, detecting all target ARGs.•Both methods enabled the spatiotemporal separation of hospital and WWTP resistomes.•Metagenomics provided contextual data making it more suitable for risk assessment.•HT qPCR permitted more sensitive quantification of clinically relevant AMR genes. Wastewater serves as an important reservoir of antimicrobial resistance (AMR), and its surveillance can provide insights into population-level trends in AMR to inform public health policy. This study compared two common high-throughput screening approaches, namely (i) high-throughput quantitative PCR (HT qPCR), targeting 73 antimicrobial resistance genes, and (ii) metagenomic sequencing. Weekly composite samples of wastewater influent were taken from 47 wastewater treatment plants (WWTPs) across Wales, as part of a national AMR surveillance programme, alongside 4 weeks of daily wastewater effluent samples from a large municipal hospital. Metagenomic analysis provided more comprehensive resistome coverage, detecting 545 genes compared to the targeted 73 genes by HT qPCR. It further provided contextual information critical to risk assessment (i.e. potential bacterial hosts). In contrast, HT qPCR exhibited higher sensitivity, quantifying all targeted genes including those of clinical relevance present at low abundance. When limited to the HT qPCR target genes, both methods were able to reflect the spatiotemporal dynamics of the complete metagenomic resistome, distinguishing that of the hospital and the WWTPs. Both approaches revealed correlations between resistome compositional shifts and environmental variables like ammonium wastewater concentration, though differed in their interpretation of some potential influencing factors. Overall, metagenomics provides more comprehensive resistome profiling, while qPCR permits sensitive quantification of genes significant to clinical resistance. We highlight the importance of selecting appropriate methodologies aligned to surveillance aims to guide the development of effective wastewater-based AMR monitoring programmes. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39018584</pmid><doi>10.1016/j.watres.2024.121989</doi><orcidid>https://orcid.org/0000-0001-9596-3333</orcidid><orcidid>https://orcid.org/0009-0006-6875-3254</orcidid><orcidid>https://orcid.org/0009-0005-9053-9337</orcidid><orcidid>https://orcid.org/0000-0002-4643-6489</orcidid><orcidid>https://orcid.org/0000-0002-1482-4209</orcidid><orcidid>https://orcid.org/0000-0002-9530-7835</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2024-09, Vol.262, p.121989, Article 121989
issn 0043-1354
1879-2448
1879-2448
language eng
recordid cdi_proquest_miscellaneous_3082306067
source Elsevier
subjects ARG
Bacteria - drug effects
Bacteria - genetics
Drug Resistance, Bacterial - genetics
Environmental Monitoring - methods
Environmental reservoir
Metagenomics - methods
One Health approach
Real-Time Polymerase Chain Reaction
Wastewater - microbiology
Wastewater-based epidemiology
WBE strategy
title National-scale antimicrobial resistance surveillance in wastewater: A comparative analysis of HT qPCR and metagenomic approaches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=National-scale%20antimicrobial%20resistance%20surveillance%20in%20wastewater:%20A%20comparative%20analysis%20of%20HT%20qPCR%20and%20metagenomic%20approaches&rft.jtitle=Water%20research%20(Oxford)&rft.au=Knight,%20Margaret%20E.&rft.date=2024-09-15&rft.volume=262&rft.spage=121989&rft.pages=121989-&rft.artnum=121989&rft.issn=0043-1354&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2024.121989&rft_dat=%3Cproquest_cross%3E3082306067%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c241t-39ca1e2f3165ddbe6f2bd5d3307e8572788012c650aaab27c07a42a51491e8613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082306067&rft_id=info:pmid/39018584&rfr_iscdi=true