Loading…
Therapeutic Effects of PEG-Modified Polyamide Amine Dendrimer for Cell Free DNA Adsorption in Temporomandibular Joint Osteoarthritis
Temporomandibular joint osteoarthritis (TMJ OA) is characterized by the degeneration of cartilage and subchondral bone. In this study, we observed a significant increase in cell-free DNA (cfDNA) levels during the progression of TMJ OA. Bioinformatics analysis identified TLR9 as a pivotal molecule in...
Saved in:
Published in: | ACS applied materials & interfaces 2024-07, Vol.16 (30), p.39153-39164 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Temporomandibular joint osteoarthritis (TMJ OA) is characterized by the degeneration of cartilage and subchondral bone. In this study, we observed a significant increase in cell-free DNA (cfDNA) levels during the progression of TMJ OA. Bioinformatics analysis identified TLR9 as a pivotal molecule in TMJ OA pathogenesis. The polyamidoamine (PAMAM) dendrimer characterized by a well-structured, highly branched, and reactive nature, exhibits robust binding and clearance capabilities for cfDNA. However, the abundant amino groups on the surface of PAMAM lead to its inherent toxicity. To mitigate this, PEG-5000 was conjugated to the surface of PAMAM dendrimers, enhancing safety. Our results indicate that PEG–PAMAM effectively inhibits the upregulation of the TLR9 protein in TMJ OA, significantly suppressing the activation of the p-IκBα/p-NF-κB signaling pathway and subsequently decreasing chondrocyte inflammation and apoptosis, as evidenced by both in vivo and in vitro experiments. We conclude that PEG–PAMAM is a safe and effective material for in vivo applications, offering a promising therapeutic strategy for TMJ OA by targeting cfDNA clearance. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c08569 |