Loading…
Nanozyme-Catalyzed Colorimetric Detection of the Total Antioxidant Capacity in Body Fluids by Paper-Based Microfluidic Chips
Total antioxidants play a crucial role in human health, and detection of the total antioxidant capacity (TAC) has broad application prospects in fields such as food safety, environmental assessment, and disease diagnosis. However, a long detection time, cumbersome steps, high cost, reliance on profe...
Saved in:
Published in: | ACS applied materials & interfaces 2024-07, Vol.16 (30), p.39857-39866 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Total antioxidants play a crucial role in human health, and detection of the total antioxidant capacity (TAC) has broad application prospects in fields such as food safety, environmental assessment, and disease diagnosis. However, a long detection time, cumbersome steps, high cost, reliance on professional equipment, and nonportability still remain significant challenges. In this work, an efficient strategy of point-of-care testing (POCT) of the TAC in body fluids by nanozyme-catalyzed colorimetric paper-based microfluidic sensors is proposed. The paper-based microfluidic sensors coupled with a smartphone can reduce testing costs and provide portability. The nanozyme prepared by the solvothermal method presents Michaelis constants of 0.11 and 0.129 mM for H2O2 and TMB, respectively. A method for immobilizing nanozymes and chromogenic agents on a paper-based microfluidic chip is established. Based on smartphone photography and image grayscale extraction, the TAC can be qualitatively detected with a detection limit and linear range of 33.4 and 50–700 μM, respectively. Furthermore, the proposed sensor can realize the one-step quantitative analysis of the TAC in body fluids (blood, saliva, and sweat) within 15 min. The proposed nanozyme-catalyzed colorimetric paper-based microfluidic sensors presented in this study exhibit promising application prospects in the fields of biochemical analysis and POCT. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c07835 |