Loading…
Bayesian modeling of spatial ordinal data from health surveys
Health surveys allow exploring health indicators that are of great value from a public health point of view and that cannot normally be studied from regular health registries. These indicators are usually coded as ordinal variables and may depend on covariates associated with individuals. In this ar...
Saved in:
Published in: | Statistics in medicine 2024-09, Vol.43 (21), p.4178-4193 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2786-865a80b46545a0744c5342e71213f4295f009af6da7bf0e18d5aae8c898a67883 |
container_end_page | 4193 |
container_issue | 21 |
container_start_page | 4178 |
container_title | Statistics in medicine |
container_volume | 43 |
creator | Beltrán‐Sánchez, Miguel Ángel Martinez‐Beneito, Miguel‐Angel Corberán‐Vallet, Ana |
description | Health surveys allow exploring health indicators that are of great value from a public health point of view and that cannot normally be studied from regular health registries. These indicators are usually coded as ordinal variables and may depend on covariates associated with individuals. In this article, we propose a Bayesian individual‐level model for small‐area estimation of survey‐based health indicators. A categorical likelihood is used at the first level of the model hierarchy to describe the ordinal data, and spatial dependence among small areas is taken into account by using a conditional autoregressive distribution. Post‐stratification of the results of the proposed individual‐level model allows extrapolating the results to any administrative areal division, even for small areas. We apply this methodology to describe the geographical distribution of a self‐perceived health indicator from the Health Survey of the Region of Valencia (Spain) for the year 2016. |
doi_str_mv | 10.1002/sim.10166 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082311035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095056474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2786-865a80b46545a0744c5342e71213f4295f009af6da7bf0e18d5aae8c898a67883</originalsourceid><addsrcrecordid>eNp10EtLw0AUBeBBFFurC_-ABNzoIvbOe7JwocUXVFyo63CbTGxKHnUmUfLvTU11Ibg6d_Fx4B5CjilcUAA29XnZH1SpHTKmEOkQmDS7ZAxM61BpKkfkwPsVAKWS6X0y4hEwDjwak8tr7KzPsQrKOrVFXr0FdRb4NTY5FkHt0rzqM8UGg8zVZbC0WDTLwLfuw3b-kOxlWHh7tM0Jeb29eZndh_Onu4fZ1TxMmDYqNEqigYVQUkgELUQiuWBWU0Z5JlgkM4AIM5WiXmRgqUklojWJiQwqbQyfkLOhd-3q99b6Ji5zn9iiwMrWrY85GMYpBS57evqHrurW9U9sVCRBKqFFr84Hlbjae2ezeO3yEl0XU4g3m8b9pvH3pr092Ta2i9Kmv_JnxB5MB_CZF7b7vyl-fngcKr8ASih93Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095056474</pqid></control><display><type>article</type><title>Bayesian modeling of spatial ordinal data from health surveys</title><source>Wiley</source><creator>Beltrán‐Sánchez, Miguel Ángel ; Martinez‐Beneito, Miguel‐Angel ; Corberán‐Vallet, Ana</creator><creatorcontrib>Beltrán‐Sánchez, Miguel Ángel ; Martinez‐Beneito, Miguel‐Angel ; Corberán‐Vallet, Ana</creatorcontrib><description>Health surveys allow exploring health indicators that are of great value from a public health point of view and that cannot normally be studied from regular health registries. These indicators are usually coded as ordinal variables and may depend on covariates associated with individuals. In this article, we propose a Bayesian individual‐level model for small‐area estimation of survey‐based health indicators. A categorical likelihood is used at the first level of the model hierarchy to describe the ordinal data, and spatial dependence among small areas is taken into account by using a conditional autoregressive distribution. Post‐stratification of the results of the proposed individual‐level model allows extrapolating the results to any administrative areal division, even for small areas. We apply this methodology to describe the geographical distribution of a self‐perceived health indicator from the Health Survey of the Region of Valencia (Spain) for the year 2016.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.10166</identifier><identifier>PMID: 39023039</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Bayes Theorem ; Bayesian analysis ; Female ; Health Status Indicators ; Health surveillance ; Health surveys ; Health Surveys - statistics & numerical data ; Humans ; individual‐level model ; Likelihood Functions ; Male ; Models, Statistical ; ordinal data analysis ; post‐stratification ; Public health ; Small-Area Analysis ; Spain - epidemiology ; Spatial Analysis ; spatial statistics ; survey‐based studies</subject><ispartof>Statistics in medicine, 2024-09, Vol.43 (21), p.4178-4193</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2786-865a80b46545a0744c5342e71213f4295f009af6da7bf0e18d5aae8c898a67883</cites><orcidid>0000-0001-8406-8050 ; 0000-0001-9450-2973 ; 0000-0002-1091-9534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39023039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beltrán‐Sánchez, Miguel Ángel</creatorcontrib><creatorcontrib>Martinez‐Beneito, Miguel‐Angel</creatorcontrib><creatorcontrib>Corberán‐Vallet, Ana</creatorcontrib><title>Bayesian modeling of spatial ordinal data from health surveys</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Health surveys allow exploring health indicators that are of great value from a public health point of view and that cannot normally be studied from regular health registries. These indicators are usually coded as ordinal variables and may depend on covariates associated with individuals. In this article, we propose a Bayesian individual‐level model for small‐area estimation of survey‐based health indicators. A categorical likelihood is used at the first level of the model hierarchy to describe the ordinal data, and spatial dependence among small areas is taken into account by using a conditional autoregressive distribution. Post‐stratification of the results of the proposed individual‐level model allows extrapolating the results to any administrative areal division, even for small areas. We apply this methodology to describe the geographical distribution of a self‐perceived health indicator from the Health Survey of the Region of Valencia (Spain) for the year 2016.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Female</subject><subject>Health Status Indicators</subject><subject>Health surveillance</subject><subject>Health surveys</subject><subject>Health Surveys - statistics & numerical data</subject><subject>Humans</subject><subject>individual‐level model</subject><subject>Likelihood Functions</subject><subject>Male</subject><subject>Models, Statistical</subject><subject>ordinal data analysis</subject><subject>post‐stratification</subject><subject>Public health</subject><subject>Small-Area Analysis</subject><subject>Spain - epidemiology</subject><subject>Spatial Analysis</subject><subject>spatial statistics</subject><subject>survey‐based studies</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10EtLw0AUBeBBFFurC_-ABNzoIvbOe7JwocUXVFyo63CbTGxKHnUmUfLvTU11Ibg6d_Fx4B5CjilcUAA29XnZH1SpHTKmEOkQmDS7ZAxM61BpKkfkwPsVAKWS6X0y4hEwDjwak8tr7KzPsQrKOrVFXr0FdRb4NTY5FkHt0rzqM8UGg8zVZbC0WDTLwLfuw3b-kOxlWHh7tM0Jeb29eZndh_Onu4fZ1TxMmDYqNEqigYVQUkgELUQiuWBWU0Z5JlgkM4AIM5WiXmRgqUklojWJiQwqbQyfkLOhd-3q99b6Ji5zn9iiwMrWrY85GMYpBS57evqHrurW9U9sVCRBKqFFr84Hlbjae2ezeO3yEl0XU4g3m8b9pvH3pr092Ta2i9Kmv_JnxB5MB_CZF7b7vyl-fngcKr8ASih93Q</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Beltrán‐Sánchez, Miguel Ángel</creator><creator>Martinez‐Beneito, Miguel‐Angel</creator><creator>Corberán‐Vallet, Ana</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8406-8050</orcidid><orcidid>https://orcid.org/0000-0001-9450-2973</orcidid><orcidid>https://orcid.org/0000-0002-1091-9534</orcidid></search><sort><creationdate>20240920</creationdate><title>Bayesian modeling of spatial ordinal data from health surveys</title><author>Beltrán‐Sánchez, Miguel Ángel ; Martinez‐Beneito, Miguel‐Angel ; Corberán‐Vallet, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2786-865a80b46545a0744c5342e71213f4295f009af6da7bf0e18d5aae8c898a67883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Female</topic><topic>Health Status Indicators</topic><topic>Health surveillance</topic><topic>Health surveys</topic><topic>Health Surveys - statistics & numerical data</topic><topic>Humans</topic><topic>individual‐level model</topic><topic>Likelihood Functions</topic><topic>Male</topic><topic>Models, Statistical</topic><topic>ordinal data analysis</topic><topic>post‐stratification</topic><topic>Public health</topic><topic>Small-Area Analysis</topic><topic>Spain - epidemiology</topic><topic>Spatial Analysis</topic><topic>spatial statistics</topic><topic>survey‐based studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beltrán‐Sánchez, Miguel Ángel</creatorcontrib><creatorcontrib>Martinez‐Beneito, Miguel‐Angel</creatorcontrib><creatorcontrib>Corberán‐Vallet, Ana</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beltrán‐Sánchez, Miguel Ángel</au><au>Martinez‐Beneito, Miguel‐Angel</au><au>Corberán‐Vallet, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian modeling of spatial ordinal data from health surveys</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2024-09-20</date><risdate>2024</risdate><volume>43</volume><issue>21</issue><spage>4178</spage><epage>4193</epage><pages>4178-4193</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><abstract>Health surveys allow exploring health indicators that are of great value from a public health point of view and that cannot normally be studied from regular health registries. These indicators are usually coded as ordinal variables and may depend on covariates associated with individuals. In this article, we propose a Bayesian individual‐level model for small‐area estimation of survey‐based health indicators. A categorical likelihood is used at the first level of the model hierarchy to describe the ordinal data, and spatial dependence among small areas is taken into account by using a conditional autoregressive distribution. Post‐stratification of the results of the proposed individual‐level model allows extrapolating the results to any administrative areal division, even for small areas. We apply this methodology to describe the geographical distribution of a self‐perceived health indicator from the Health Survey of the Region of Valencia (Spain) for the year 2016.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>39023039</pmid><doi>10.1002/sim.10166</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8406-8050</orcidid><orcidid>https://orcid.org/0000-0001-9450-2973</orcidid><orcidid>https://orcid.org/0000-0002-1091-9534</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2024-09, Vol.43 (21), p.4178-4193 |
issn | 0277-6715 1097-0258 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_3082311035 |
source | Wiley |
subjects | Bayes Theorem Bayesian analysis Female Health Status Indicators Health surveillance Health surveys Health Surveys - statistics & numerical data Humans individual‐level model Likelihood Functions Male Models, Statistical ordinal data analysis post‐stratification Public health Small-Area Analysis Spain - epidemiology Spatial Analysis spatial statistics survey‐based studies |
title | Bayesian modeling of spatial ordinal data from health surveys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20modeling%20of%20spatial%20ordinal%20data%20from%20health%20surveys&rft.jtitle=Statistics%20in%20medicine&rft.au=Beltr%C3%A1n%E2%80%90S%C3%A1nchez,%20Miguel%20%C3%81ngel&rft.date=2024-09-20&rft.volume=43&rft.issue=21&rft.spage=4178&rft.epage=4193&rft.pages=4178-4193&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.10166&rft_dat=%3Cproquest_cross%3E3095056474%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2786-865a80b46545a0744c5342e71213f4295f009af6da7bf0e18d5aae8c898a67883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3095056474&rft_id=info:pmid/39023039&rfr_iscdi=true |