Loading…

Bayesian modeling of spatial ordinal data from health surveys

Health surveys allow exploring health indicators that are of great value from a public health point of view and that cannot normally be studied from regular health registries. These indicators are usually coded as ordinal variables and may depend on covariates associated with individuals. In this ar...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2024-09, Vol.43 (21), p.4178-4193
Main Authors: Beltrán‐Sánchez, Miguel Ángel, Martinez‐Beneito, Miguel‐Angel, Corberán‐Vallet, Ana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2786-865a80b46545a0744c5342e71213f4295f009af6da7bf0e18d5aae8c898a67883
container_end_page 4193
container_issue 21
container_start_page 4178
container_title Statistics in medicine
container_volume 43
creator Beltrán‐Sánchez, Miguel Ángel
Martinez‐Beneito, Miguel‐Angel
Corberán‐Vallet, Ana
description Health surveys allow exploring health indicators that are of great value from a public health point of view and that cannot normally be studied from regular health registries. These indicators are usually coded as ordinal variables and may depend on covariates associated with individuals. In this article, we propose a Bayesian individual‐level model for small‐area estimation of survey‐based health indicators. A categorical likelihood is used at the first level of the model hierarchy to describe the ordinal data, and spatial dependence among small areas is taken into account by using a conditional autoregressive distribution. Post‐stratification of the results of the proposed individual‐level model allows extrapolating the results to any administrative areal division, even for small areas. We apply this methodology to describe the geographical distribution of a self‐perceived health indicator from the Health Survey of the Region of Valencia (Spain) for the year 2016.
doi_str_mv 10.1002/sim.10166
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082311035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095056474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2786-865a80b46545a0744c5342e71213f4295f009af6da7bf0e18d5aae8c898a67883</originalsourceid><addsrcrecordid>eNp10EtLw0AUBeBBFFurC_-ABNzoIvbOe7JwocUXVFyo63CbTGxKHnUmUfLvTU11Ibg6d_Fx4B5CjilcUAA29XnZH1SpHTKmEOkQmDS7ZAxM61BpKkfkwPsVAKWS6X0y4hEwDjwak8tr7KzPsQrKOrVFXr0FdRb4NTY5FkHt0rzqM8UGg8zVZbC0WDTLwLfuw3b-kOxlWHh7tM0Jeb29eZndh_Onu4fZ1TxMmDYqNEqigYVQUkgELUQiuWBWU0Z5JlgkM4AIM5WiXmRgqUklojWJiQwqbQyfkLOhd-3q99b6Ji5zn9iiwMrWrY85GMYpBS57evqHrurW9U9sVCRBKqFFr84Hlbjae2ezeO3yEl0XU4g3m8b9pvH3pr092Ta2i9Kmv_JnxB5MB_CZF7b7vyl-fngcKr8ASih93Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095056474</pqid></control><display><type>article</type><title>Bayesian modeling of spatial ordinal data from health surveys</title><source>Wiley</source><creator>Beltrán‐Sánchez, Miguel Ángel ; Martinez‐Beneito, Miguel‐Angel ; Corberán‐Vallet, Ana</creator><creatorcontrib>Beltrán‐Sánchez, Miguel Ángel ; Martinez‐Beneito, Miguel‐Angel ; Corberán‐Vallet, Ana</creatorcontrib><description>Health surveys allow exploring health indicators that are of great value from a public health point of view and that cannot normally be studied from regular health registries. These indicators are usually coded as ordinal variables and may depend on covariates associated with individuals. In this article, we propose a Bayesian individual‐level model for small‐area estimation of survey‐based health indicators. A categorical likelihood is used at the first level of the model hierarchy to describe the ordinal data, and spatial dependence among small areas is taken into account by using a conditional autoregressive distribution. Post‐stratification of the results of the proposed individual‐level model allows extrapolating the results to any administrative areal division, even for small areas. We apply this methodology to describe the geographical distribution of a self‐perceived health indicator from the Health Survey of the Region of Valencia (Spain) for the year 2016.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.10166</identifier><identifier>PMID: 39023039</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bayes Theorem ; Bayesian analysis ; Female ; Health Status Indicators ; Health surveillance ; Health surveys ; Health Surveys - statistics &amp; numerical data ; Humans ; individual‐level model ; Likelihood Functions ; Male ; Models, Statistical ; ordinal data analysis ; post‐stratification ; Public health ; Small-Area Analysis ; Spain - epidemiology ; Spatial Analysis ; spatial statistics ; survey‐based studies</subject><ispartof>Statistics in medicine, 2024-09, Vol.43 (21), p.4178-4193</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). Statistics in Medicine published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2786-865a80b46545a0744c5342e71213f4295f009af6da7bf0e18d5aae8c898a67883</cites><orcidid>0000-0001-8406-8050 ; 0000-0001-9450-2973 ; 0000-0002-1091-9534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39023039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beltrán‐Sánchez, Miguel Ángel</creatorcontrib><creatorcontrib>Martinez‐Beneito, Miguel‐Angel</creatorcontrib><creatorcontrib>Corberán‐Vallet, Ana</creatorcontrib><title>Bayesian modeling of spatial ordinal data from health surveys</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Health surveys allow exploring health indicators that are of great value from a public health point of view and that cannot normally be studied from regular health registries. These indicators are usually coded as ordinal variables and may depend on covariates associated with individuals. In this article, we propose a Bayesian individual‐level model for small‐area estimation of survey‐based health indicators. A categorical likelihood is used at the first level of the model hierarchy to describe the ordinal data, and spatial dependence among small areas is taken into account by using a conditional autoregressive distribution. Post‐stratification of the results of the proposed individual‐level model allows extrapolating the results to any administrative areal division, even for small areas. We apply this methodology to describe the geographical distribution of a self‐perceived health indicator from the Health Survey of the Region of Valencia (Spain) for the year 2016.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Female</subject><subject>Health Status Indicators</subject><subject>Health surveillance</subject><subject>Health surveys</subject><subject>Health Surveys - statistics &amp; numerical data</subject><subject>Humans</subject><subject>individual‐level model</subject><subject>Likelihood Functions</subject><subject>Male</subject><subject>Models, Statistical</subject><subject>ordinal data analysis</subject><subject>post‐stratification</subject><subject>Public health</subject><subject>Small-Area Analysis</subject><subject>Spain - epidemiology</subject><subject>Spatial Analysis</subject><subject>spatial statistics</subject><subject>survey‐based studies</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10EtLw0AUBeBBFFurC_-ABNzoIvbOe7JwocUXVFyo63CbTGxKHnUmUfLvTU11Ibg6d_Fx4B5CjilcUAA29XnZH1SpHTKmEOkQmDS7ZAxM61BpKkfkwPsVAKWS6X0y4hEwDjwak8tr7KzPsQrKOrVFXr0FdRb4NTY5FkHt0rzqM8UGg8zVZbC0WDTLwLfuw3b-kOxlWHh7tM0Jeb29eZndh_Onu4fZ1TxMmDYqNEqigYVQUkgELUQiuWBWU0Z5JlgkM4AIM5WiXmRgqUklojWJiQwqbQyfkLOhd-3q99b6Ji5zn9iiwMrWrY85GMYpBS57evqHrurW9U9sVCRBKqFFr84Hlbjae2ezeO3yEl0XU4g3m8b9pvH3pr092Ta2i9Kmv_JnxB5MB_CZF7b7vyl-fngcKr8ASih93Q</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Beltrán‐Sánchez, Miguel Ángel</creator><creator>Martinez‐Beneito, Miguel‐Angel</creator><creator>Corberán‐Vallet, Ana</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8406-8050</orcidid><orcidid>https://orcid.org/0000-0001-9450-2973</orcidid><orcidid>https://orcid.org/0000-0002-1091-9534</orcidid></search><sort><creationdate>20240920</creationdate><title>Bayesian modeling of spatial ordinal data from health surveys</title><author>Beltrán‐Sánchez, Miguel Ángel ; Martinez‐Beneito, Miguel‐Angel ; Corberán‐Vallet, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2786-865a80b46545a0744c5342e71213f4295f009af6da7bf0e18d5aae8c898a67883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Female</topic><topic>Health Status Indicators</topic><topic>Health surveillance</topic><topic>Health surveys</topic><topic>Health Surveys - statistics &amp; numerical data</topic><topic>Humans</topic><topic>individual‐level model</topic><topic>Likelihood Functions</topic><topic>Male</topic><topic>Models, Statistical</topic><topic>ordinal data analysis</topic><topic>post‐stratification</topic><topic>Public health</topic><topic>Small-Area Analysis</topic><topic>Spain - epidemiology</topic><topic>Spatial Analysis</topic><topic>spatial statistics</topic><topic>survey‐based studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beltrán‐Sánchez, Miguel Ángel</creatorcontrib><creatorcontrib>Martinez‐Beneito, Miguel‐Angel</creatorcontrib><creatorcontrib>Corberán‐Vallet, Ana</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beltrán‐Sánchez, Miguel Ángel</au><au>Martinez‐Beneito, Miguel‐Angel</au><au>Corberán‐Vallet, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian modeling of spatial ordinal data from health surveys</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2024-09-20</date><risdate>2024</risdate><volume>43</volume><issue>21</issue><spage>4178</spage><epage>4193</epage><pages>4178-4193</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><abstract>Health surveys allow exploring health indicators that are of great value from a public health point of view and that cannot normally be studied from regular health registries. These indicators are usually coded as ordinal variables and may depend on covariates associated with individuals. In this article, we propose a Bayesian individual‐level model for small‐area estimation of survey‐based health indicators. A categorical likelihood is used at the first level of the model hierarchy to describe the ordinal data, and spatial dependence among small areas is taken into account by using a conditional autoregressive distribution. Post‐stratification of the results of the proposed individual‐level model allows extrapolating the results to any administrative areal division, even for small areas. We apply this methodology to describe the geographical distribution of a self‐perceived health indicator from the Health Survey of the Region of Valencia (Spain) for the year 2016.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39023039</pmid><doi>10.1002/sim.10166</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8406-8050</orcidid><orcidid>https://orcid.org/0000-0001-9450-2973</orcidid><orcidid>https://orcid.org/0000-0002-1091-9534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2024-09, Vol.43 (21), p.4178-4193
issn 0277-6715
1097-0258
1097-0258
language eng
recordid cdi_proquest_miscellaneous_3082311035
source Wiley
subjects Bayes Theorem
Bayesian analysis
Female
Health Status Indicators
Health surveillance
Health surveys
Health Surveys - statistics & numerical data
Humans
individual‐level model
Likelihood Functions
Male
Models, Statistical
ordinal data analysis
post‐stratification
Public health
Small-Area Analysis
Spain - epidemiology
Spatial Analysis
spatial statistics
survey‐based studies
title Bayesian modeling of spatial ordinal data from health surveys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20modeling%20of%20spatial%20ordinal%20data%20from%20health%20surveys&rft.jtitle=Statistics%20in%20medicine&rft.au=Beltr%C3%A1n%E2%80%90S%C3%A1nchez,%20Miguel%20%C3%81ngel&rft.date=2024-09-20&rft.volume=43&rft.issue=21&rft.spage=4178&rft.epage=4193&rft.pages=4178-4193&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.10166&rft_dat=%3Cproquest_cross%3E3095056474%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2786-865a80b46545a0744c5342e71213f4295f009af6da7bf0e18d5aae8c898a67883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3095056474&rft_id=info:pmid/39023039&rfr_iscdi=true